Strong Cache Consistency Support for Domain Name System

Xin Chen, Haining Wang, Shansi Ren and Xiaodong Zhang
College of William and Mary, Williamsburg, Virginia

Motivation

TTL-Based Cache Consistence:
- Originally designed for static domain name mapping
- Only weak consistency provided

Current DNS Cache Updates:
- Set a short TTL before update (2-3 days)
- Resume to a normal TTL after update (2-3 days)
- Long update delays even changes are anticipated!

Problems:
- (in the changing world!) many changes are unexpected while critical services need always-on availability
- Dynamic domain name mapping: widely deployed dynamic DNS solution sets up servers on temporal IPs from DHCP
- Emergence events to support: Web servers are closed/moved at emergence (e.g. 911, nature disaster, etc.)
- Redundant DNS traffic: Content Delivery Network providers use small TTLs to achieve load balance among their surrogates

Objective
An effective solution for DNS cache consistency

Methods

- Domain Name Collection
 - SOA: authority indication for a zone
 - A: hostnames to IP address mappings
 - PTR: IP addresses to hostname mappings
 - NS: domain name server reference lists for a zone
 - MX: mail exchangers for a domain.

DNS resource records are changed for different purposes
- 'A' records -- most used, have significant effects if changed
- our measurements are focused on 'A' records

Dynamic Lease

- Lease: a combination of polling and invalidation
- Challenge: lease length selection
 - long leases: more storage overhead
 - short leases: more network traffic

Assumption: request intervals follow Poisson distribution with average arrival rate λ

Problem definition:
Storage-constrained lease: minimize the storage allocation

Optimal solution:
maximal lease length granted to the caches with the highest query rate (dynamic lease), because:

\[
\Delta M = \frac{1}{\Delta P}
\]

Communication-constrained lease can be defined and solved in a similar way.

Measurement Results

<table>
<thead>
<tr>
<th>Class</th>
<th>TTL</th>
<th>Resolution</th>
<th>Duration</th>
<th>Domain number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0,1m)</td>
<td>20 sec</td>
<td>1 day</td>
<td>405</td>
</tr>
<tr>
<td>2</td>
<td>(1m, 5m)</td>
<td>1 min</td>
<td>3 days</td>
<td>934</td>
</tr>
<tr>
<td>3</td>
<td>(5m, 3h)</td>
<td>5 min</td>
<td>3 days</td>
<td>2020</td>
</tr>
<tr>
<td>4</td>
<td>(1h, 1d)</td>
<td>1 hour</td>
<td>7 days</td>
<td>7217</td>
</tr>
<tr>
<td>5</td>
<td>(1d, 2d)</td>
<td>1 day</td>
<td>1 month</td>
<td>4473</td>
</tr>
</tbody>
</table>

Our Solution -- DNsCup
DNS Cache Update Protocol

Basic idea: an authoritative name server uses dynamic lease technique to notify relevant caches when its resource record changes.

Dynamic Lease Performance - Storage

Implementation

- Efficiency
 - UDP: first choice
- Update propagation without NOTIFY
- Robustness
 - Name server repeats sending until ACK received
 - DNS cache validates all records after reboot
- Compatibility
 - Name server supports both TTL and DNScup mechanisms
 - DNS cache can use both TTL and lease
- Security
 - Name server uses TSIG to control updates
 - DNS cache uses ACK to verify updates

For more information, contact Xin Chen,
Department of Computer Science
College of William and Mary
P.O. Box 8795
Williamsburg, VA 23185
Tel. 757 221-3477
E-mail: xinchen@cs.wm.edu

Implementation test bed

DNS Cache Update Protocol

1. DNS query (with request rate to local name server)
2. Granted Lease (with adjusted lease length)
3. DNS dynamic update message
4. Dynamic cache update message

Dynamic Lease Performance - Request

Implementation

- Lease: a combination of polling and invalidation
- Challenge: lease length selection
 - long leases: more storage overhead
 - short leases: more network traffic

Assumption: request intervals follow Poisson distribution with average arrival rate λ

Problem definition:
Storage-constrained lease: minimize the storage allocation

Optimal solution:
maximal lease length granted to the caches with the highest query rate (dynamic lease), because:

\[
\Delta M = \frac{1}{\Delta P}
\]

Communication-constrained lease can be defined and solved in a similar way.

For more information, contact Xin Chen,
Department of Computer Science
College of William and Mary
P.O. Box 8795
Williamsburg, VA 23185
Tel. 757 221-3477
E-mail: xinchen@cs.wm.edu

Implementation test bed