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Abstract
Topological spatial data can be useful for the classification
and analysis of biomedical data. Neural networks have been
used previously to make diagnostic classifications of corneal
disease using summary statistics as network inputs. This
approach neglects global shape features (used by clinicians
when they make their diagnosis) and produces results that
are difficult to interpret clinically. In this study we propose
the use of Zernike polynomials to model the global shape of
the cornea and use the polynomial coefficients as features
for a decision tree classifier. We use this model to classify a
sample of normal patients and patients with corneal distor-
tion caused by keratoconus. Extensive experimental results,
including a detailed study on enhancing model performance
via adaptive boosting and bootstrap aggregation leads us
to conclude that the proposed method can be highly accu-
rate and a useful tool for clinicians. Moreover, the resulting
model is easy to interpret using visual cues.
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1 Introduction
Storage and retrieval of biomedical information in elec-
tronic format has become increasingly common and
complex. Data repositories have grown due to an in-
crease in the number of records stored as well as a pro-
liferation of the number of features collected. There
is growing need for methods of extracting useful in-
formation from such databases. Due to the richness
of the information stored in these databases, there are
many potential uses of this data including the conduct
of biomedical research, patient care decision support,
and health care resource management.

Simple database queries can fail to address specific
informational needs for several reasons: the query may
not retrieve information needed because of user bias,
lack of skill or experience, or limitations of the query
software or database platform. In addition, this data
often represents extremely complex relationships that
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may escape even the most experienced content expert
working with a highly competent database developer.
As a result, many industries have looked to data mining
as a general approach for the automated discovery of
knowledge from these databases. Data mining has been
widely applied in other domains such as fraud detection
and marketing and is now found increasingly useful in a
variety of health care database environments including
insurance claim processing, electronic medical records,
epidemiological surveillance, and drug utilization.

In the current study, we propose a new application
of data mining and explore its use for clinical decision
support and research applications. It is our belief
that there are significant limitations when adopting
existing approaches to mine biomedical clinical data.
First, the data itself is more complex than a typical
business transactional database. Second, information
in these databases contain data with more elaborate
relationships that are difficult to model accurately (e.g.
structure-function relationships). Third, there is often
a language barrier when clinicians attempt to apply
data mining techniques. Problems range from selecting
appropriate techniques and associated parameters, to
interpretation of the resulting patterns.

In this study we focus on analysis of clinical data
relating to keratoconus, a progressive non-inflammatory
corneal disease that frequently leads to corneal trans-
plantation. We describe a mathematical transformation
of spatial data from clinical images, evaluate the useful-
ness of this method for pattern classification by decision
trees, and explore further data reduction to optimize
this approach for accurate and efficient data mining of
spatial (image) data.

The main contributions of this study are:

• The use of a well known mathematical global
model (Zernike Polynomials), and the experimental
determination of the polynomial order required,
to capture the underlying spherical harmonics of



corneal shape and use as a basis for classification.
A key result of using the Zernike representation
is a massive reduction in number of data points
associated with a particular elevation map.

• An in-depth experimental evaluation of a decision
tree algorithm with real patient data. We also
evaluated the use of bagging and boosting and
the implication of these strategies on the resulting
model. We find that the resulting classification
model has an overall accuracy of 91% on our
dataset.

• In addition to the quantitative results, the data
transformation we use can be easily visualized so
that the resulting classification model is simple to
interpret. This leads us to believe that this overall
approach is quite promising.

The rest of this paper is organized as follows. In
Section 2 we describe the relevant clinical background
and the work that is closely related to this study. In
Section 3 we describe the data transformation we use
to represent the shape of the cornea, our data set, and
how we applied decision tree decision tree induction in
our experiments. Section 4 documents the experimental
results we use to support our claims. Finally, we
conclude and identify some possible avenues of future
research in Section 5.

2 Clinical Background

The product of videokeratography is a high-resolution
spatial map of corneal shape. Videokeratography, also
known as corneal topography has become an essential
tool for managing patients with corneal diseases that af-
fect corneal shape, as well as corneal refractive surgery,
and contact lens fitting [18]. The most common method
of videokeratography is performed by measuring the dis-
tortion of a series of calibrated concentric rings reflected
from the convex surface of the cornea. The image of
these reflected rings is captured and corneal shape is
mathematically derived from this captured image, see
Figure 1. The derived corneal shape is displayed as a
false color three-dimensional map.

The need to interpret and classify these color maps
has led to several qualitative classification schemes to
identify corneal surface features associated with ocular
disease. While false color maps have improved quali-
tative data visualization, they do not provide a basis
for quantitative methods of analysis. The first quanti-
tative summaries of videokeratography were introduced
in 1989 to describe surface asymmetry [4]. Alternative
methods soon followed that continue to discriminate ab-
normal corneal shape based upon platform dependent

Figure 1: Videokeratography images. Top left, circular
rings representing normal corneal shape. Top right, cir-
cular rings from cornea with keratoconus. Bottom left,
false color elevation map representing normal cornea.
Bottom right, false color elevation map representing
cornea with keratoconus

indices [10, 26]. In their simplest form, these indices de-
tect localized areas of increased curvature without re-
gard to location, area, or other features that may be
important to correct diagnostic distinctions. Maeda et
al. constructed a more sophisticated classifier by com-
bining multiple statistical summaries into a linear dis-
criminant function [13]. Smolek et al. used multiple
indices as input for a multilayer perceptron and com-
pared this method with several other approaches [23].
Rabinowitz et al. describe an alternative classification
method based upon a combination of four localized sta-
tistical indices (summaries) and report high accuracy for
classification of keratoconus[17]. Published results for
each of these methods demonstrate very good classifica-
tion accuracy (85-95%) for their particular datasets, yet
clinicians have been slow to embrace these techniques.
Reasons for this limited acceptance include proprietary
platform restrictions, poor interpretability, and ques-
tionable relevance with respect to other clinical data
related to keratoconus.

In light of these results and limitations we seek
to provide an alternative method of videokeratography
classification that would provide high sensitivity and
specificity for correct classification of keratoconus. Our
design objectives were to: i) develop a classification
model that was platform independent; ii) maintain high



sensitivity and specificity; iii) construct a classifier that
was easily interpreted; and iv) develop a classification
scheme that could be applied to individual or population
data. We describe this alternative approach in the next
section.

3 Overall Approach
Our approach to mining spatial patterns from videok-
eratography data was to transform our numeric instru-
ment output to a Zernike polynomial representation of
the corneal surface. We then used the coefficients from
these orthogonal polynomials as inputs for a decision
tree induction algorithm, C4.5 [14, 15].

3.1 Zernike Representation We selected Zernike
polynomials to model the corneal shape because they
can potentially provide a platform independent descrip-
tion of shape [25]. Moreover they provide a precise
mathematical model that captures global shape while pre-
serving enough information for capturing local harmon-
ics. This is extremely important to detect kerato-
conus. Zernike polynomials possess several other at-
tributes desirable for pattern recognition and have been
applied across diverse domains including optical char-
acter recognition, optical encryption, and even tropical
forest management[12, 9]. Also referred to as moments,
Zernike polynomial coefficients each provide additional
independent information to the reconstruction of an
original object. We hypothesized that these orthogo-
nal moments could be useful as descriptors of corneal
shape and as attributes for induction of a decision tree
classifier. Finally, the original dataset is in the form of
an elevation map (typically 4000-7000 points), a lower
order Zernike representation (say a 10th order one) re-
quires very few coefficients (66) to represent this infor-
mation. So it also has the additional advantage of data
reduction (two orders of magnitude).

Zernike polynomials are an orthogonal series of ba-
sis functions normalized over a unit circle. These poly-
nomials increase in complexity with increasing polyno-
mial order[1]. In Figure 2, we present the basis func-
tions that result from deconstruction of a 6th order fit
to a corneal surface. Surface complexity increases by
row (polynomial order), and radial location of the sinu-
soidal surface deviations become more peripheral away
from the central column of Figure 2. Mean square error
of the modeled surface is reduced as polynomial order
is increased. An important attribute of the geometric
representations of Zernike polynomials is that lower or-
der polynomials approximate the global features of the
anatomic shape of the eye very well, while the higher or-
dered polynomial terms capture local surface features.
It is likely that the irregular sinusoidal surfaces of higher

ordered polynomial terms are not representative of nor-
mal corneal surfaces, however they may provide a useful
basis for classification of normal and keratoconic corneal
surfaces. A second important attribute of Zernike poly-
nomials is that they have a direct relationship to optical
function. These common optical and geometric prop-
erties make Zernike polynomials particularly useful for
study of the cornea and the optical systems of the eye.
A key aspect of our study is to try to identify the order
and the number of Zernike terms required to faithfully
represent keratoconic corneal surfaces and distinguish
them from normal corneal surfaces.

Zernike polynomials consist of three elements[24].
The first element is a normalization coefficient. The
second element is a radial polynomial component, and
the third element is a sinusoidal angular component.
The general form for Zernike polynomials is given by:

Z±m
n (ρ, θ) =





√
2(n + 1)Rm

n (ρ) cos(mθ), for m > 0√
2(n + 1)Rm

n (ρ) sin(|m|θ), for m < 0√
(n + 1)Rm

n (ρ), for m = 0
(3.1)
where n is the polynomial order and m represents
sinusoidal frequency. The normalization coefficient is
given by the square root term preceding the radial and
sinusoidal components. The radial component of the
Zernike polynomial, the second portion of the general
formula, is given by:

Rm
n (ρ) =

(n−|m|)/2∑

s=0

(−1)s(n − s)!

s!(n+|m|
2 − s)!(n−|m|

2 − s)!
ρn−2s

(3.2)

The final component is a frequency dependent sinusoidal
term.

Following the method suggested by Schwiegerling
et al. [21] we computed a matrix of Zernike height
values for each pair of coordinates (ρ, θ) to a N−th
order Zernike polynomial expansion using the equations
above. We then performed a standard least-squares
fit to the original data to derive the magnitude of the
Zernike polynomial coefficients. Corneal shape is known
to be mirror symmetric between right and left eyes
and non-superimposable [22]. Thus, we mathematically
transformed all left eyes to represent mirror symmetric
right eyes by sign inversion of appropriate terms before
analysis.

3.2 Classification using Decision Trees Decision
tree induction has several advantages to other methods



Figure 2: Geometric representation of 6th order Zernike polynomial series surface deconstruction plotted in polar
coordinate space. Surfaces are labeled with single numeric indices using Optical Society of America conventions.

of classifier construction. Compared with neural net-
works, decision trees are much less computationally in-
tensive, relevant attributes are selected automatically,
and classifier output is a series of if-then conditional
tests of the attributes that are easy to interpret. We
selected C4.5 as the induction algorithm for our experi-
ments [14, 15]. Freund, and Schapire describe the com-
bination of bootstrap aggregation and adaptive boost-
ing to the standard method of classifier induction with
C4.5 [6, 7, 8, 19]. In principle, bootstrap aggregation
is a compilation of standard classifiers constructed from
separate samples drawn using bootstrap methods [5].
Adaptive boosting also results in a classifier constructed
from multiple samples. Quinlan, and others have shown
that each of these methods can enhance classification
model performance with as few as ten iterations adding
minimal computational expense[16]. Using the Zernike
coefficients as input, we induced decision trees from our
data to describe the structural differences in corneal
shape between normal and keratoconic eyes.

3.3 Experimental Methodology and Dataset
Details Our classification data consisted of corneal
height data from 182 eyes (82 normal control eyes, 100
keratoconic eyes) exported from a clinical videokeratog-

raphy system (Keratron, Optikon 2000, Rome, Italy).
We fit data from the central 5 mm region to a N−th or-
der Zernike polynomial using a least-squares fitting pro-
cedure described above. The resulting matrix of polyno-
mial coefficients describes the weighted contribution of
each orthogonal polynomial’s contribution to the overall
shape of the original corneal surface. The videokeratog-
raphy data files contained a three dimensional matrix of
7000 data points in polar coordinate space where height
was specified by: z = f(ρ, θ) where height relative to the
corneal apex is a function of radial distance, and angu-
lar deviation from the map origin. This corresponds to
approximately 4100 data points for the central 5 mm
radius.

3.3.1 Metrics One method of judging the perfor-
mance of a classifier is to compare the accuracy of all
classifications. This number is calculated by the follow-
ing formula:

Accuracy =
(TP ) + (TN )
TotalSample

(3.3)

where TP is the total number of correct positive classi-
fications and TN is the total number of correct negative
classifications, or correct rejections. An other common



method of evaluating classifier performances is to look
at the sensitivity of a classification model. Sensitivity
is equivalent to the true positive rate, and is calculated
as the number of true positive classifications divided by
all positive classifications:

Sensitivity =
TP

(TP ) + (FN )
(3.4)

Another common metric in biomedical literature is the
specificity of a classification model. Specificity, also
known as the correct rejection rate, is defined as the
number of true negative classifications divided by all
negative classifications

Specificity =
TN

(TN ) + (FP )
(3.5)

As a classifier becomes more sensitive it will identify
a greater proportion of true positive instances, how-
ever, the number of false negative classifications will
consequently rise. Similarly, as a classification model
becomes more specific, i.e. correctly rejecting greater
proportion of true negative instances, then the number
of false positive classifications will also rise. One way
to visualize this relationship is to plot the true posi-
tive rate or sensitivity as a function of (1−specificity).
This graphical illustration of classification accuracy is
known as a receiver operator characteristic curve, or
ROC curve. The diagonal line joining the origin (0, 0)
with the point (1, 1) represents random classification
performance. Classifiers with accuracy better than ran-
dom chance are represented by a curve beginning at the
origin and arcing above and away from the line repre-
senting random chance. The area beneath this curve de-
scribes the quality of classifier performance over a wide
potential range of misclassification costs.

4 Experimental Results
We selected a Java implementation of C4.5 (Weka 3.2,
The University of Waikato, Hamilton, New Zealand,
http://www.cs.waikato.ac.nz/∼ml/). This version of
C4.5 implements Revision 8, the last public release of
C4.5 [27]. We used the complete data set available
for model construction and performed 10-fold stratified
cross validation of the data for model selection and
performance evaluation [11]. We evaluate the accuracy
of our classifier as well as sensitivity and specificity of
the model.

4.1 C4.5 Classification Results The purpose of
our first experiment was to systematically explore the
relationship between increasing polynomial order and
classification accuracy. Our results show an increase

in model accuracy for our classifier as a function of
the number of polynomial terms up to 7th order, see
Figure 3 and Figure 4. Using a set of 36 Zernike
polynomial terms to describe the seventh order fit to a
corneal surface we were able to accurately classify 85%
(154/182), and misclassified 15% (28/182) of instances
in our data consisting of 15 false positive classifications
as keratoconus and 13 false negatives. Similar results
were observed for specificity, and sensitivity. Beyond
7th order, specificity remained constant while both
accuracy and sensitivity were slightly worse.

We diagram the model generated from the 7th order
pruned decision tree in Figure 6. This tree is relatively
compact consisting of six rules with nine leaves, and is
based upon 8 polynomial coefficients. This is pleasing
since interpretability is one of the primary objectives
of this study. Additionally, several of the attributes
that form part of the decision tree (e.g. coefficients
4, 9, 14, and 24) have some consistency with clinical
expectations of corneal shape in keratoconus. This is
consistent with clinical experience and expectations of
corneal shape with keratoconus.

4.2 C4.5 with Adaptive Boosting The adaptive
boosting algorithm implemented in Weka is the Ad-
aBoost algorithm described by Freund and Schapire[6,
7, 8]. This was combined with the C4.5 induction algo-
rithm in separate experiments as an attempt to enhance
classifier performance. Boosting is an iterative method
of model generation. Prior to our experiments, we eval-
uated the effect of increased boosting iterations from 1
to 50 on classifier performance to select the best number
of boosting iterations. We found our error rate decayed
to approximately 10% with as few as 10 iterations of
boosting. Additional iterations did help slightly. How-
ever, results became erratic with increasing iterations
similar to findings published by Quinlan[16]. We chose
10 boosting iterations for our experiments.

As with the standard induction method we gener-
ated classifiers using increasing numbers of attributes
from the ordered polynomial coefficients. With adap-
tive boosting, we found improved classifier performance
with fewer polynomial coefficients. Performance again
degenerated beyond a 7th order surface representation.
Best performance was achieved with a 4th order poly-
nomial fit that resulted in correct classification of 91%
of our instances and misclassification of 9% of our data
instances consisting of 8 false positive classifications as
keratoconus and 10 false negatives. We summarize per-
formance statistics including accuracy, sensitivity, and
specificity for this model also in Figure 3. Boosting pro-
vided approximately 10% accuracy improvement with
fewer attributes. With seven orders of coefficients (36



Figure 4: Accuracy comparison of C4.5 classification
models with and without enhancements

attributes) the difference in accuracy with boosting was
only 4% better than the standard classifier.

4.3 C4.5 with Bootstrap Aggregation Bootstrap
aggregation, or bagging as described by Breiman,
was applied in combination with the C4.5 induction
algorithm[2]. As with boosting, we found that 10 bag-
ging iterations provided nearly maximum improvements
in classifier performance. Note that stratified ten-fold
cross validation was applied in combination with these
techniques to evaluate classifier performance.

Bagging provided the greatest improvement in clas-
sifier performance. The maximum accuracy resulted
from eight orders of polynomial coefficients, forty-five
attributes. The maximal performance values are high-
lighted in bold type in Figure 3, with accuracy of 91%,
sensitivity of 87% and specificity of 95%. In Figure 4,
we show a comparison of the standard classifier to the
standard combined with bagging or boosting. The re-
sults show that the bagging was a useful enhancement
to the standard classifier providing nearly 10% improve-
ment in all model performance parameters evaluated
as compared to the standard classifier. In Figure 5,
we present the ROC curves for the best classifiers in-
duced by each method-standard model, standard with
bagging, and standard with boosting. There is mini-

Figure 5: ROC comparison of C4.5 classification models
with and without enhancements

mal difference between the models induced with boost-
ing and bagging when compared by this method. The
standard C4.5 classification model is less accurate than
either enhanced model.

Bagging and boosting both produced considerable
improvement compared to the standard classifier induc-
tion by C4.5. However, bagging was more stable com-
pared to boosting performance, which suffered a loss of
almost ten percent in accuracy as the number of poly-
nomial attributes increased between seventh and eighth
order. Best overall model performance was achieved us-
ing ten iterations of bagging in combination with C4.5.

The instability of boosting observed in these experi-
ments is similar to those observed by others [16, 7]. This
previously observed instability of boosting observed by
others remains largely unexplained although there is
some empirical evidence that suggests this may be a
result of noise in the data. In theory, boosting per-
forms best on data sets that are not significantly per-
turbed by subsampling. Boosting works by re-weighing
misclassified instances forcing the algorithm to concen-
trate on marginal instances. With a small number of
samples, this could overweight marginal instances and
contribute to erratic classifier performance. By compar-
ison, bagging does not reweigh instances, and is known
to perform well with the datasets that are perturbed



Figure 3: Performance estimation for different models. Number of coefficients associated with each order is given
in parenthesis. Highest values are noted in bold type

significantly by subsampling.

4.4 Qualitative Results The results with bagging
and boosting are important. Based on the above re-
sults we surmise that a 4th order polynomial is capable
of discriminating between normal and abnormal corneas
when adaptive boosting is added to the standard clas-
sifier. Additional improvement may be obtained by
adding selected (not all) higher order polynomial terms
(up to 7th order). When the standard classifier is com-
bined with bagging, eight orders of coefficients are re-
quired to induce the best classifier and this gave the
highest sensitivity and specificity of any model.

We believe that many of the higher order terms
contribute noise to the model. The intuition for this
is based on the results we observe and the fact that it is
strongly believed that boosting is highly susceptible to
noise[19, 3]. We believe that a 4th order representation
has less overall noise (i.e. most all the terms contribute
to the classification task). The improved results with a
7th order representation (without boosting) indicates
that some terms at higher orders may improve the
classifier performance further. This issue is part of
ongoing and future work.

The resulting classification model is simple, and in-
terpretable. More than 82% (82/100) of the total num-

ber of keratoconic eyes in this sample could be identified
from the values of 4 coefficients. More than 90% of ker-
atoconus cases could be correctly classified using the
values of two additional coefficients. Interestingly, two
rules (a subset of the total number) correctly classified
83% of the normal instances.

Decision trees avoid either bias by automating rele-
vant feature selection based upon the quantitative sep-
arability of the training instances. In addition, the
Zernike polynomial coefficients that became splitting
attributes in the decision tree model appear to have
strong empirical validity since the shape represented by
the polynomial functions j = 4, 5, 9, 14, 16 and 24
(see Figures 2 and 6) correspond with either a greater
parabolic shape or an inferior temporal shape irregular-
ity. Several researchers and clinical practitioners have
known about the relationship between keratoconus and
features describing increased parabolic shape, oblique
toricity, and high frequency peripheral irregularities.
That the model automatically identified the particular
Zernike coefficients that correspond to these features,
and used them to discriminate diseased and normal
eyes, is clear validation of the method. Moreover, unlike
previous studies[20], our model has the advantage that
since it uses coefficients that are associated with a cen-
tral elevation, it would be more sensitive (and therefore



Figure 6: Decision Tree classification model from C4.5. Splitting attributes are labeled with Optical Society of
America’s single index Zernike polynomial naming conventions. Leafs are labeled with classification and accuracy
where Y = keratoconus, and N= normal; (percent correct / percent incorrect). This tree resulted from induction
with 36 Zernike polynomial coefficients as attributes corresponding to a 7th Order Zernike polynomial surface
representation.

be able to recognize) to centrally symmetric keratoconus
which occurs frequently in patients.

Our attempt to reduce the dimensionality of data
while maintaining interpretive ability using a Zernike
polynomial data transformation was successful. By se-
lecting the polynomial coefficients as a weighted repre-
sentation of shape features, the initially large data set
was reduced to 66 numeric attributes for a tenth order
polynomial fit. Our results show that a subset of these
polynomial coefficients could be enhanced classifier per-
formance with further reduction in the dimensionality
of the data representation.

A difference from this study and the work of others
is the complexity and portability of the methods as well
as the interpretability of the result. In addition, the
ability to extend decision tree models to include other
clinical data such as measures of visual function, corneal
thickness, and even quality of life measures will permit
classification and characterization of the severity of dis-
ease based upon other attributes. Note that direct com-
parisons between our results and those reported in other
studies are difficult to interpret due to the differences in
sample size, it’s sample selection procedures, dissimilar-
ity of disease severity across studies, and other possible
factors.

One limitation of the current study is the diame-

ter of data analyzed. While 5 mm is a reasonable size
limit, it is possible that the area of analysis will influ-
ence feature selection in a significant way. Ideally, we
conceive an automated feature selection method, which
we may explore in the near future. Second, the sam-
ple size of this study is too limited to allow broad gen-
eralizations about the usefulness of this classification
approach for all instances of keratoconus. Rather, we
intend this study to show the benefits of spatial data
transformation to medical image data and subsequent
feature detection from the application of data mining
techniques. We also believe that this approach to spa-
tial data mining may prove useful for other domains
such as cartography, optical inspection and other forms
of biomedical image analysis.

5 Conclusions
In this study we propose the use of Zernike polynomi-
als to model the global shape of the cornea and use the
polynomial coefficients as features for decision tree clas-
sification of a sample of normal patients and patients
with corneal distortion caused by keratoconus. Ex-
tensive experimental results, including a detailed study
on enhancing model performance via adaptive boosting
and bootstrap aggregation leads us to conclude that the
proposed method can be highly accurate and a useful



tool for clinicians.
We feel there are a number of advantages to this

approach. First, unlike neural networks decision trees
allow some intuitive interpretation of the underlying
structure to the data. Transforming videokeratography
data with Zernike polynomials preserves important spa-
tial information about corneal surface features, while
utilizing objective and quantitative methods to recog-
nize patterns from the data. Several of the lower order
Zernike polynomial terms (i.e. 3-9) have inferred clini-
cal significance. We are pleased to find that most of the
coefficients identified as important for correct classifi-
cations by standard decision tree induction have some
empirical clinical validity. Those that do not are in-
teresting exceptions that may lead us to further explo-
ration. Although boosting and bagging enhancements
to the standard decision tree induction algorithm im-
proved classification accuracy, the resulting model was
less interpretable. We are currently working on im-
proved visualization techniques for these more complex
models.

We believe the approach presented in this study fa-
cilitates decision support, rather than decision making.
Additionally, the method of analysis presented herein is
portable and may be applied to data from virtually any
clinical instrument platform. For example, the Ohio
State Universitiy’s Collaborative Logitudinal Evalua-
tion of Keratoconus (CLEK) , has years of data col-
lected from over a thousand patients with multiple types
of videokeatography instruments prior to standardiza-
tion with a single instrument platform. Analysis of data
from this study would benefit from our approach.

For vision scientists who may be interested in
analysis of ocular surfaces this approach may yield new
methods of analysis. Specifically, keratoconus research
may benefit from such a quantitative method of analysis
that would allow statistically based classification, and
prediction. Additional data mining methods such as
clustering and association rules could provide insights
into the etiology, severity, and longitudinal progression
of this disease, and these are directions we would like to
explore and pursue.
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