An Interactive Resource-Aware Framework for Distributed Data Mining

Srinivasan Parthasarathy *
Department of Computer and Information Science
Ohio State University,
Columbus, OH-43210
srini@cis.ohio-state.edu

Ramesh Subramonian
PurpleYogi.com,
MountainView, CA
ramesh_subramonian@yahoo.com

February 12, 2001

Abstract
The computationally-intensive nature of many data mining algorithms and the size of the datasets involved has motivated efforts to use parallel computing to produce timely results. A particularly cost effective computing platform for such parallelizations is a network of workstations (NOW). However, there are many problems associated with efficient parallelizations on a NOW, including data transmission over a low bandwidth network, load-balancing, fault-tolerance, interactivity, programming complexity, etc.

To address some of these problems, in this paper, we propose the programmable, distributed doall, a generic mechanism, similar to the doall primitive on SMPs, which schedules a set of independent tasks on a NOW. It allows incremental reporting of results, which is used to allow the user to monitor and, if necessary, interrupt the operation. Most importantly, it seeks to reduce communication bandwidth requirements by allowing specification of resource requirements of the tasks at the application programming level. This information is used by a “resource-aware” scheduler to reduce communication. We evaluate the performance of this mechanism on Discretization and Clustering, two common data mining techniques.

Keywords: Distributed Algorithms, Data Mining, Network of Workstations, Programming Primitives

*Work described in this article was done while at Intel
1 Introduction

As our ability to collect, store, and distribute huge amounts of data increases with advancing technology, discovering the knowledge hidden in these ever-growing databases has become a pressing problem. This problem referred to as data-mining, an effort to derive interesting conclusions from large bodies of data, is an interactive process. In fact, interactivity is often the key to facilitating effective data understanding and knowledge discovery. In such an environment response time is crucial because lengthy time delay between responses of two consecutive user requests can disturb the flow of human perception and formation of insight. However, extracting knowledge from these massive databases is a compute and data intensive process which makes the task of guaranteeing quick response times difficult. In order to solve this problem researchers have taken a two pronged approach. To minimize the I/O traffic involved in these applications researchers have evaluated the viability of using data reduction techniques such as discretization [FI93], and sampling [ZPOL97b], while sacrificing little in terms of result quality. Simultaneously to compute results faster, researchers are turning to effective parallelization of existing data mining algorithms [SAM96, ZPOL97, CHN+96].

Modern-day enterprises usually contain a cluster of shared memory workstations connected by some (intra-enterprise) network. Such a cluster of shared-memory symmetric multi-processors (SMPs) can be a cost effective powerful computational resource. However, leveraging this enterprise wide resource for data mining poses several problems.

First, the programming model in cluster computing is based on message passing. In terms of programmability this model is more complicated than the intra-workstation shared memory model. Furthermore, parallel programming primitives like doall constructs that exist on a shared memory system [Hig93], are not available on a cluster platform. Corresponding primitives for parallelization on an SMP cluster can alleviate this problem.

Second, due to the large datasets involved, distributing the data across a limited bandwidth interconnection network is expensive. Techniques that can reduce the communications costs, by reducing the input data size, are essential for distributed data mining. Ideally, such techniques should compromise on result quality and comprehensiveness as little as possible.

Third, the very nature of the knowledge-discovery process requires the user to be tightly integrated into it. Providing interactivity in the form of monitoring, computational steering and fast response times in an asynchronous, distributed environment is difficult, but useful. In order for this to happen algorithms have to be re-architected in a fashion that permits such desirable features.
1.1 Contributions

In this paper we present a programmable data parallel primitive D-DOALL that addresses each of the above problems in the following way.

- **Usability** Our solution takes the form of the traditional *doall* primitive, a popular way to express data parallelism in shared memory multiprocessors. The runtime system handles executing it across a network of workstations.

- **Limited Bandwidth and Large Datasets** The regularity of many data mining algorithms means that one can reason about the resource (input data) requirements of individual independent tasks. A good scheduling algorithm can take advantage of this information to minimize communication. Our runtime system incorporates a global affine scheduler which does this.

- **Interactivity** Our primitive supports partial (incremental) result reporting in a timely fashion and also permits clients to terminate execution at any point in the computation.

We evaluate the primitive on two commonly used data mining applications: discretization and clustering.

1.2 Organization

In Section 2, we describe the architecture of the distributed data mining system we have implemented to set our primitive in context. In Section 3, we describe the distributed *doall* (D-DOALL) primitive. In Section 4 we highlight alternative scheduling policies for the D-DOALL primitive. In Section 5, we evaluate the relative merits of these policies using a simulation of a template application. In Section 6, we present actual speedups on a NOW for our applications. Finally, in Section 7, we present our conclusions and outline directions for future work.

2 Architecture

In this section, we discuss the salient characteristics of data mining that guided our design of the D-DOALL, which facilitates parallelizing data mining applications on a network of workstations (NOW). These characteristics are:
1. **High Communication Needs and Low Bandwidth.** The input data size is often large and the communication bandwidth of a NOW is low. To some extent, this is remedied by a variety of techniques including sampling, caching results/data, approximation techniques such as compression, etc. However, the regularity of many data mining algorithms means that one can reason about the resource (input data) requirements of individual tasks. A good scheduling algorithm should be able to use this information to minimize communication.

2. **Succinct Problem Description and Output.** In a distributed architecture (Section 2), it is often possible to provide succinct descriptions of the input e.g., “partition dataset X into 4 clusters” or “discretize the continuous attributes in dataset Y”. The rationale of learning being summarization, the output of many data algorithms is often small e.g., a decision tree or a cluster is a very compact representation of what is often a large dataset.

3. **Incremental Result Reporting.** We believe that the user should be closely engaged in the knowledge discovery process in a manner where the machine performs the grunt work of proposing and evaluating hypotheses and the user guides the search process and makes judgement calls on issues where raw numbers are inadequate differentiators. One way to meet this requirement is to report results incrementally. Many data mining tasks are composed of sub-tasks, the results of which are useful even when the entire task is not yet completely performed. For example, one might be willing to accept a ”quick-and-dirty” result while refinement continues in the background. Also, the ability to terminate a data mining search, when the value of further searches is questionable, is a useful property, as argued in Section 6.

Next, we sketch the architecture of a distributed data mining system we have implemented. The design of our system took into account the interactivity and large datasets involved in mining applications. In addition as we have already mentioned it often possible to provide succinct descriptions of the input e.g., “partition dataset X into 4 clusters” or “discretize the continuous attributes in dataset Y”. This permitted us to decouple task description from the actual data required by the task and is reflected in our decoupled architecture. This decoupling is important as it potentially enables different tasks to obtain data from multiple sources simultaneously.

Our architecture consists of the following logical components:

- **Client** consisting of the GUI, a task manager that directs the mining process, and a local cache of data/results of prior computations. It is responsible for the interacting with the
data mining engine in terms of invoking, guiding and monitoring computations as well as visualization of the results.

- Compute Servers, each consisting of a task manager, a compute module, which is the core data mining engine, and a local data cache. All compute servers are indistinguishable in terms of structure and code base.

- Data Server consisting of a data distiller and the source database. The data distiller reads data from the database and performs appropriate data compaction transformations before passing it to the compute servers.

![IntelliMiner Architecture](image)

Figure 1: IntelliMiner Architecture

The physical layout of these logical components depends on available resources. In a fully distributed mode the components, i.e. the client, each compute server and the data server are physically separated. When the data sets are relatively small and the client is relatively powerful, all components could be resident on the client. Figure 1 depicts the overall architecture with arrows indicating communication patterns.

2.1 Communication Protocol

In this section, we describe the basic protocol for communicating across any two tiers in our architecture. For exposition, we describe with an example how the communication between a client and
compute server transpires.

Figure 2: Communication Protocol

Figure 2 depicts a typical communication between a client and a compute server. The client task manager (caller), that needs to execute the remote service first pings the task manager on the compute server to see if it is overloaded. If the server is not overloaded, then the client packages the function call and transmits it to the compute server. On receiving the packed function call, the task manager forks a thread to execute the job, and returns a job identifier to the caller. This permits the caller to stop/kill the compute server job (callee) if and when required. The compute module thread that executes the job unmarshals the function call, invokes the appropriate function, and generates the results. When the function has completed its execution the results are packaged by the callee and returned to the caller.

The communication protocol is implemented on top of C++ sockets. We evaluated using distributed object technology like COM/CORBA but found sockets to be the cheapest (performance wise). We also have a prototype implementation on top of MPI[Mes94] to permit portability across different architectures, but do not evaluate it in this paper.

2.2 Distributed Data Mining Systems

Several systems have been developed for distributed mining applications, although none to the best of our knowledge discuss task scheduling for such applications. The JAM [ST97](Java Agents for
Meta-learning) and the BODHI [KHS97] system assume that the data is distributed. They employ local learning techniques to build models at each distributed site, and then move these models to a centralized location. The models are then combined to build a meta-model whose inputs are the outputs of the various models and whose output is the desired outcome. The Kensington [Guo97] architecture treats the entire distributed data as one logical entity and computes an overall model from this single logical entity. The architecture relies on standard protocols such as JDBC to move the data. Both our system and the Papyrus system [GB98] are designed around data servers, compute servers, and clients. However, our architecture explicitly supports resource-aware scheduling as well as interactivity through the Distributed Doall programming primitive, described in the next few sections.

Orthogonal to this work is the InterAct [PD01] framework which allows distributed processes to share data. InterAct is a runtime framework that presents the user with a transparent and efficient data sharing mechanism across disparate processes. The goal is to combine efficiency and ease-of-use. InterAct allows clients to cache relevant shared data locally, enabling faster response times to interactive queries. Further, InterAct provides flexible client-controlled mechanisms to map and specify consistency requirements for shared data. The D-DOALL mechanism that we propose in this paper can be used in conjunction with InterAct’s shared object format for distributed data mining application development.

3 Distributed DOALL primitive

A doall loop is one in which the loop iterations are independent [Wol96], i.e. , where there are no conflicts between iterations. In other words where an element that is assigned is used on that iteration only then the loop is referred to as a doall loop. In such a case, executing the iterations sequentially or in parallel in any order is legal, since the result does not depend on the order. It is a simple mechanism that is often adequate to express parallelism. Loops that are not strictly doall loops (such as a loop that sums the elements of an array) can often be cast as doall loops by performing partial summations in parallel and then sequentially combining the results of the partial sums. A sample doall loop is shown below.

\begin{verbatim}
for (i = 0; i < N; i++) { A[i] = B[i]; }
\end{verbatim}
doall((void (*)(void))body, iters,...,N, A, B); /* do in parallel */
void body1(int *start, int *iters, int A[], int B[])
{
 int i;
 for (i = *start; i < start + *iters; i++) {
 A[i] = B[i];
 }
}

Figure 3: Sample parallelization using doall

The doall primitive we adopt is loosely based on the parallel for defined in OpenMP (www.openmp.org), an industry-wide initiative to unify parallel programming constructs on SMPs, and is similar in flavor to the forall construct in High Performance Fortran [Hig93] (although forall is more of a compile-time construct, whereas the doall in figure 3 is a pure runtime construct). Despite the restrictiveness of doall, its adherence to an industry standard, ease of use and portability make it an attractive choice on the SMP platform.

Figure 3 presents the invocation of the doall construct on our sample doall loop.

The runtime system is responsible for scheduling different iterations of the loop body on different processors by assigning appropriate values to start and iters (a variable to chunk several consecutive iterations on the same processor) and invoking the function body.

Providing a variant of the doall mechanism on a cluster of SMPs would reduce the complexity of distributed programming. However the implicit assumption of shared memory in the doall primitive is an obstacle to a direct transformation into the distributed, memory model. To overcome this, we designed the distributed doall primitive, the D-DOALL. The D-DOALL is invoked as follows. The application specifies a set of tasks to be executed in parallel. For each task it marshalls the function to be executed and the input arguments to the function as a linear array of bytes. The result of each task is a linear array of bytes, the interpretation of which is the responsibility of the calling routine. Figure 4 specifies the calling mechanism. Note that the input/output semantics of the D-DOALL prevent passing of parameters by value.
Distributed-DOALL(
 int T; /* number of independent tasks */
 void **inputsList; /* [T][] */
 void **outputsList; /* [T][] */
 FuncPtr body; /* body of doall loop */
);

Figure 4: Basic Distributed DOALL Interface

The main thread that invokes the D-DOALL first identifies the available compute servers. This is identical to the first part of the communication protocol described in Section 2.1. It then spawns a local doall thread for each available remote compute server. The main thread then blocks until all tasks are done. Each local doall thread selects a task from the task queue and sends that task to its associated compute server and blocks until it receives the output. On receiving the result (output) it selects another task and repeats the process. When all tasks are done the local doall threads terminate and the main thread that invoked the D-DOALL is resumed.

Figure 4 shows the basic structure of the D-DOALL interface. We now describe how additional features such as scheduling and support for interactivity can be added to this basis.

3.1 Supporting Interactivity

We extend the D-DOALL mechanism to support interactivity in two ways (Figure 5). One is by providing a terminate mechanism. The other is by providing a mechanism which allows the calling thread to be made aware of the completion of a particular task.

Termination is handled as follows. We permit the application developer to pass as a parameter a location in global memory (interrupt_flag) that initially contains the boolean False. If the D-DOALL is to be terminated by the client the interrupt_flag is set to the value True. The main thread spins on this flag while waiting for all its tasks to complete. When this flag is set to True, the main thread simply cancels all tasks which have not been scheduled and waits for any outstanding scheduled tasks to complete. Once these outstanding tasks complete, the main thread exits from the D-DOALL call.

We permit the application developer to pass as a parameter to the D-DOALL, a function pointer
typedef void (*FuncPtr)(void *, int);
DistributedDOALL(
 int T; /* number of independent tasks */
 void **inputsList; /* [T][] */
 void **outputsList; /* [T][] */
 FuncPtr body; /* body of doall loop */
 int &interrupt_flag; /* global interrupt flag */
 FuncPtr fp /* functional processing */);

Figure 5: Interactive Resource-aware D-DOALL

fp that takes as its argument a void* pointer. Essentially we modified the way each local doall thread behaves on receiving the output from a compute server. After scheduling the next job it executes the function pointed to by fp with the result output as the parameter. Within this function the local doall thread can notify the GUI of incremental progress made in an application specific manner.

4 Scheduling

4.1 Previous Work

Given a set of T tasks and a set of P processors, the scheduling problem can be informally stated as deciding which processor executes which task when. One solution is to statically partition the work among the processors (Static Scheduling) at compile time [Wol96, Pol88, LP93]. Such schemes have been implemented on NOWs [CLZ95, CR92, Gea94]. Another solution is to hand out tasks one at a time to a free processor requesting work (Simple (Dynamic) Scheduling) [Pol88, ML94]. More complicated dynamic strategies have also been proposed (in some cases application specific) [LK87, NS93, Bea96].

The scheduling policy for the D-DOALL specified in Figure 4 is the simple, dynamic policy. We currently support a simple dynamic scheduling policy. Tasks are scheduled in the order specified, thus allowing the user to have some control on the order in which partial results will be reported. This feature is used in Section 6.2.1.
4.2 Desired Scheduling Properties

A good scheduling algorithm should be able to satisfy certain basic requirements such as fault tolerance and load balancing. In addition, a desirable property is “resource-aware” scheduling, also called “affinity-scheduling” [ML94]. A “resource-aware” scheduling algorithm takes into account the resources (in terms of data or partial results) that a processor possesses in its local cache when it determines what task to assign to that processor. Using matrix-multiply ($C \leftarrow A \times B$) as an example, the creation of $C_{i,j}$ is ideally assigned to the processor that possesses row i of A and column j of B.

This feature is especially desirable in data-intensive applications such as data mining. In such applications, it is often the case that the format in which data is stored for report generation is not the most appropriate format for mining the data. In such cases the data has to be transformed into a form which is acceptable to the application. Furthermore, several applications like Discretization [FI93, SVC97], Clustering [SGIF97], and Similarity Analysis [AF93], may accept a distilled/compressed form of the output. Reduction of the output data prior to transmission reduces the bandwidth requirement of the interconnection network and storage requirements at the compute server. The need to minimize communication is especially important in a distributed environment where communication bandwidth is relatively small and one seeks to reduce demands on the database server. The overall cost of obtaining a resource needs to factor in the cost of such transformations along with the cost of communicating the transformed or distilled data. Therefore, in such applications, the overall cost of obtaining a resource can be very expensive.

A good scheduling algorithm, which analyzes resource requirements and schedules tasks in resource-aware manner, can prove to be beneficial to such applications. Clearly this analysis will take time. However, if the time spent scheduling is small when compared with cost of obtaining such resources, then resource-aware scheduling should outperform traditional schedulers for such applications. In the ensuing sections we present such resource-aware algorithms and examine the performance of the scheduling algorithms both qualitatively and quantitatively.

4.3 Application Programming Interface

In this section, we describe how the D-DOALL API changes from that of Figure 5 to that of Figure 6 in order to become “resource-aware”. The application needs to inform the scheduling algorithm about the resource requirements of each task as follows. The user specifies (i) a list of R
resources, numbered 1...R, (ii) a list of T tasks, numbered 1...T, and (iii) for each task, a list of resources needed to perform that task.

We explain the above specification using matrix multiply as an example. Consider \[C[m][p] \leftarrow A[m][n] \times B[n][p]. \] There are \(m + p\) resources, the \(m\) rows of \(A\) and the \(p\) columns of \(B\). There are \(m \times p\) tasks corresponding to the creation of each element of \(C\). Task \((i \times m) + p\) is the creation of \(C_{i,j}\) and requires resources \(i\) and \(m + j\) where resource \(i\) is the \(i\)th row of \(A\) and resource \(m + j\) is the \(j\)th column of \(B\).

In Section 4.4, we will show how specifying the resource requirements of each task, enables the scheduler to make educated guesses as to the resources possessed by a processor and hence, the suitability of assigning a specific task to a specific processor. We seek to answer the question: “can we do a better job of scheduling than the algorithms of Section 4.1 without imposing an onerous burden either on the programmer or on the scheduler?”

4.4 Algorithms

In Sections 4.4.1, 4.4.2 and 4.5, we present two different “resource-aware” scheduling algorithms, and a discussion of their respective advantages and disadvantages. In Section 5, we present an empirical evaluation of their performance.
The fundamental idea behind resource-aware scheduling is to use the knowledge of the resources possessed by a processor to determine which task should be assigned to it. We hope to be able to have an approximate idea of the resources that a processor possesses based on tasks executed by it in the past. Knowing the resources a processor possesses allows us to define a metric to evaluate the relative suitability of different tasks. In Section 4.4.1 and 4.4.2, we will make the assumption that each processor has an infinite cache. Hence, at any point in time, it possesses all resources for all tasks performed by that time. We will relax this assumption in Section 4.5.

We introduce some useful notation. Let S be the set of processors. Let R be the set of resources. Let T be the set of tasks. We shall also use T to refer to the set of incomplete tasks at any point in time.

Notation 4.1 $R(t) \subseteq R$ is the set of resources required to execute task t.

Notation 4.2 $R(s) \subseteq R$ is the set of resources possessed by server s.

Notation 4.3 $R(r, s) = 1$ if $r \in R(s)$ (i.e., processor s possesses resource r); else, 0.

We define the cost, $C_{t,s}$ (Equation 1), of executing task, t, on server, s, as the sum of resources that need to be obtained before the task can be executed (Equation 1). For instance, if a processor s already has resources x and y and task t requires resources w, x, y, z the cost of evaluating t on s is 2, corresponding to obtaining resources w and z. Note that we are making the implicit assumption that all resources are equally expensive to obtain for all processors. Note that by cost we mean only the cost of acquisition of resources, not the computational time.

$$C_{s,t} = \sum_{r \in R(t)} (1 - R(r, s)).$$ (1)

For complexity analysis, we assume that each task requires a constant number of resources i.e.,

$$\forall t : |R(t)| = 1.$$

4.4.1 Local Algorithm

In this section, we describe a scheduling algorithm which operates under the infinite-cache assumption. The algorithm is local i.e., each server assesses the value of a task without consideration of other servers. While it is simple, it suffers, in performance (Section 5), a limitation we address in Section 4.4.2.
The local scheduler under the infinite cache assumption, works as follows. Assume server s requests a task. From the set of uncompleted tasks, T, assign task t' to processor s such that $C_{t',s}$ is minimum over all $t \in T$.

Theorem 4.1 The local algorithm requires $O(|T|)$ time per scheduling decision.

Proof: Every time a server requests a task, there are $O(T)$ tasks to be evaluated. Each evaluation requires $O(1)$ work since, by assumption, $\forall t: |R(t)| = 1$. The proof follows. \[\square\]

4.4.2 Global Algorithm

In this section, we show how one can make scheduling decisions from a global viewpoint, as opposed to a purely local viewpoint (Section 4.4.1). In this algorithm, if processor, s', requests a task and there exists a task, t', of zero cost for it, $(C_{t',s'} = 0)$, we assign t' to s'. When no such task exists, the scheduling decision becomes more complex. Let the smallest cost to perform task t be C_t (Equation 2).

$$C_t = \min_{s \in S} (C_{t,s}) \quad (2)$$

At a given point in time, let, C^{old} (Equation 3), be the sum of the smallest cost to perform all remaining tasks.

$$C^{\text{old}} = \sum_{t \in T} C_t \quad (3)$$

Consider a tentative assignment of t' to s'. The cost or investment involved in making this assignment is $C_{t',s'}$. Based on this assignment, let the new cost (similar to Equation 3) be $C^{\text{new}}(t', s')$. Therefore, the gain or return on investment of this assignment is $G(t', s') = C^{\text{old}} - C^{\text{new}}(t', s')$. We choose t' so as to maximize the profit, $P^{*}_{t', s'}$ (Equation 4) which is the difference between the investment and the return on investment.

$$P^{*}_{t', s'} = (C^{\text{old}} - C^{\text{new}}(t', s')) - C_{t', s'} \quad (4)$$

However, Equation 4 does not capture the reality that the ability of s' to perform t'' at a small, or zero, cost, does not guarantee that it will in fact be assigned t''. This is because of load balancing requirements which might require the scheduler to assign t'' to s'' even if $C_{t'', s''} > C_{t'', s'}$. Hence, we need to temper our estimate of the return on investment. We do so by using a factor $\beta (0 < \beta < 1)$.

14
Determining the optimal value of β remains an open problem. We now replace Equation 4 with Equation 5.

$$P_{t', s'} = \beta(C^{old} - C^{new}(t', s')) - C_{t', s'}$$ (5)

Note that when $\beta = 0$, maximizing $P_{t', s'}$ is the same as minimizing $C_{t', s'}$, which is precisely the local algorithm (Section 4.4.1). We now discuss a tie-breaking mechanism invoked when more than one task has the same gain for a given processor. The intuition behind this approach is to reduce the overlap between the resources possessed by different processors. N_r (Equation 6) is the number of processors that possess r. Let $AR(s', t')$ (Equation 7) be the set of Additional Resources that s' must acquire to perform t'. We choose t' so as to minimize $RO(t', s')$ (Equation 8), which measures the increase in Resource Overlap when s' acquires $AR(t', s')$.

$$N_r = \sum_{s \in S} R(s, r)$$ (6)

$$AR(s', t') = R(t) - R(S)$$ (7)

$$RO(t') = \sum_{r \in AR(s', t')} N_r$$ (8)

The global scheduler under the infinite cache assumption works as follows. When a processor s requests a task, Assign it task t' if $\exists t' : C_{t', s} = 0$. Else, assign task t' such that Equation 5 is maximized. In either case, if more than one task qualifies, assign the task for which $RO(t)$ is minimum.

Lemma 4.1 $C_{t, s}$ does not increase. C_t does not increase.

Proof: Follows from fact that $R(r, s)$ does not change once it becomes 0 and from Equation 4.3. □

Theorem 4.2 The global algorithm requires $O(T^2)$ time per scheduling decision.
\textbf{Proof}: Let $C_{t,s}$ and C_t be constructed initially at a one-time cost of $O(ST)$. At each request by processor s', we have to (i) evaluate $C_{s',t}$ for each $t \in T$, (ii) update $C_{t}^{\text{new}} = \min_{s \in S} C_{s',t}$, and (iii) calculate $C_{t}^{\text{new}}(t', s') \leftarrow \sum_{t \in T} C_{t}^{\text{new}}$. Using Lemma 4.1, we see that step (ii) above requires us to concern ourselves only with this particular server, s'. Hence, all three steps above require $O(T)$ time. Note that once the choice of t' is decided upon, it requires, no additional time to update $C_{t,s'}$ and C_t appropriately. The above three steps have to be performed for each possible value of t', yielding a time complexity of $O(|T|^2)$. \hfill \square

4.5 Removing the Infinite Cache Assumption

In Sections 4.4.1 and 4.4.2, we made the arguably unreasonable assumption that a processor has an infinite cache i.e., once it acquires a resource, it possesses it for all subsequent time. In this section, we seek to relax that assumption. This requires reasoning about what resources a processor is likely to relinquish. While this reasoning is rife with approximation, we show (Section 5.3) that it can improve performance.

Assume the requests by processor s to the scheduler to occur at times 0, 1, 2 \ldots where 0 refers to the most recent request. The scheduler can keep track of the last time, $V(r,s)$, at which resource r was acquired by processor s. Initially, $\forall r \forall s : V(r,s) = \infty$. Assume that server s has just been assigned task t. This means that $\forall r \in R(t)$, $V(r,s) = 0$. Assume that s had been assigned t' at the previous point in time. This means that $\forall r \in (R(t') - R(t))$, $V(r,s) = 1$.

In Sections 4.4.1 and 4.4.2, $R(s,r) = 1$ if s had been assigned a task that required r at some previous time and 0 otherwise. Now, we make a probabilistic estimate of $R(s,r)$ as $\alpha^{V(r,s)}$, where $0 < \alpha < s1$ is an aging parameter. A drawback of our current approach is that the value of α is set somewhat arbitrarily.

Both the local and global algorithms can be modified to remove the infinite cache assumption by simply changing the way $R(r,s)$ is calculated as shown above. Unfortunately, since Lemma 4.1 does not apply, this introduces a factor of $O(ST)$ with each scheduling decision.

In the next section we qualitatively compare the three policies on a simple template application and show why we believe resource-aware scheduling is so important for minimizing communication.
5 Scheduling Policy Analysis

In this section, we evaluate the pros and cons of the various scheduling policies using a template application that closely mirrors, in its computational and data access patterns, several data mining applications.

In Section 5.1, we describe the template application. In Section 5.2, we compare the algorithms of Section 4.4.2 and 4.5 and a simple dynamic scheduler. Later in Appendix 5.4, we discuss the primary limitation of the resource aware strategies, scheduling time complexity, and outline two ways in which this limitation can be alleviated.

5.1 (Upper Diagonal) Matrix Multiply

The template application is an upper diagonal matrix multiply. The tasks are: \(\forall i, \forall j < i\), compute \(C_{i,j} = \sum_k A_{i,k} \times B_{k,j}\). The resources are the rows of \(A\) and the columns of \(B\). The resource requirements of task \(C_{i,j}\) is row \(i\) of \(A\) and column \(j\) of \(B\). The cost, to a server, of performing \(C_{i,j}\) is 2 if it possesses neither row \(i\) of \(A\) nor column \(j\) of \(B\); 1, if it possesses either one and 0 if it possesses both.

We now motivate our choice of this particular template application by showing that it mirrors the computational and data access patterns of many commonly used data mining algorithms. We list a few examples below.

- Feature Selection: The goal of feature selection [DKS95] is to select the smallest subset of features, \(\{X_1, \ldots X_n\}\), that best determines the class label, \(Y\). Let \(f(X_i, X_j)\) be the ability of features \(X_i\) and \(X_j\) to jointly predict \(Y\). For expository simplicity, limit the number of features selected to 2. Feature selection can be rephrased as evaluating \(\forall i \forall j < i : f(X_i, X_j)\), which is identical to the template application.

- Diff: The diff primitive [Sub98] provides a high-level view of the differences between two databases that share the same set of attributes, \(\{X_1, \ldots X_n\}\). Again for expository simplicity, assume that we are interested only in pair-wise differences. Let \(f(X_i, X_j)\) be the difference between the data sets when each is projected onto attributes \(X_i\) and \(X_j\). The diff problem is to rank \(\forall i \forall j < i : f(X_i, X_j)\).

- Decision Trees: In the process of growing a decision tree [Qui93], the problem is to determine which leaf node to split and for each leaf node, which attribute to use for the decision at
that node. Consider the computation at a node. While typically, a single attribute is used as the decision variable, one can well consider extensions to more than one attribute (e.g., $X > 5 \land Y < 6$) as long as the decisions remain simple [PSV98]. We [PSV98] clearly demonstrate that this approach is comparable to, and in some instances better than, the state of the art work in discretization, at a fraction of the computational cost. Limiting oneself to selecting attributes pair-wise, the problem is to determine $f(X_i, X_j)$ for all pairs X_i, X_j, where $\{X_i, X_j\}$ are the attributes and $f(X_i, X_j)$ measures the goodness of X_i, X_j as a decision attribute.

Another important problem in this domain is in visualizing the results of discretization (also clustering). Since current limitations in graphics pretty much restrict you to 2 or 3D (two base attributes and one goal attribute) visualizations, an important task of the discretizer is to decide what to display to the user, i.e., identify which of several base attribute pairs best display separations between discrete regions. In order to do this it has been suggested in past work that entropy [SVC97] could be used to pick the pair of attributes that best meet the desired objective. Once again the formulated problem (computing and comparing the entropy for all base attribute pairs) resembles our template application.

We note that while we are limiting our analysis, and thereby our examples from the data mining world, to data cubes (resources per task) of size two for expository simplicity, our scheduling algorithm is capable of handling larger datacube problems. Furthermore, while the examples we outlined above are such that can take advantage of our resource-aware scheduling algorithms, our primitive is capable of addressing other data mining applications as well. Many distributed data mining tasks like association mining (ECLAT [ZPOL97]), sequence mining, and clustering [SGIF97], take an approach of dividing or replicating the data set (or the dataset is pre-divided) and selectively broadcasting the data at the beginning of the process, thus eliminating the need for communication of the data set during the learning process. Our architecture and primitive allows us to handle these scenarios as well. By separating the data acquisition from the task acquisition, in our architecture, and having distributed data servers we actually permit multiple compute servers to obtain their data simultaneously, as opposed to the traditional centralized broadcast approach. If on the other hand the application requires a central broadcast of data, then our D-DOALL primitive supports this as well via the inputsList parameter (see figure 6).
5.2 Comparison of scheduling strategies

To compare the scheduling policies, we used our template application, upper-triangular matrix multiply where \(A, B, C \) are \(8 \times 8 \) matrices and 4 servers, so that \(|R| = 16, |T| = \binom{8}{2} = 28, |S| = 4 \). (The small numbers are merely to simplify presentation of results.) The assumptions under which the scheduling strategies are evaluated are:

- Servers request for new tasks in a fixed order. Without any loss of generality we assume that servers 1, 2, 3, and 4 request for tasks in that order.
- All servers are equally fast and equally loaded.
- Time to make a scheduling decision is the same for all policies.

<table>
<thead>
<tr>
<th>Simple Scheduler</th>
<th>Local Scheduler</th>
<th>Global Scheduler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Id</td>
<td>#col + #row</td>
<td>Server Id</td>
</tr>
<tr>
<td>1</td>
<td>5 + 5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5 + 5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4 + 6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5 + 6</td>
<td>4</td>
</tr>
</tbody>
</table>

| Total | 41 | 33 | 25 |

Figure 7: Comparison of Different Scheduling Policies

Figure 7 depicts the schedule generated by Simple, Local resource aware, and the global resource aware scheduling policies. Numeric values in the corresponding task box indicate which server executed that particular task. Below each schedule, we indicate how many resources (broken down into rows of \(A \) and columns of \(B \)) each server acquired and the total resources acquired by all.
servers. For example from the analysis we see that under Simple Scheduling, server 4 obtained 5 columns and 6 rows.

The fewer the total number of resources acquired, the better the overall performance. The global scheduling policy (Section 4.4.2) outperforms the local scheduling policy which in turn outperforms the simple, dynamic scheduling policy. Interestingly enough, for this example, the schedule generated by the global policy is optimal.

5.3 Finite Cache Case

To study the effect of the cache being finite on the effectiveness of scheduling, we conducted the following experiment. We used the template application (Section 5.1) with $n = 32$, $|S| = 2$, $|T| = \left(\frac{n}{2}\right) = 120$, $|R| = 2n = 64$. We varied the cache that each processor possessed from 2 to $n = 32$. Notice the assumption of an infinite cache would lead to inaccurate cost calculations. The better one can reason about the resources a processor possesses, the more accurate the cost calculations. We compared how scheduling effectiveness changed when one tried to reason about the likelihood of a resource having been purged from a processor’s cache. The results, in Figure 8, indicate that such a reasoning is beneficial. It also indicates that the choice of α is critical to the success.

![Figure 8: Effect of Finite Cache on Scheduling Effectiveness](image)

In the next section we discuss the primary limitation of the resource aware strategies, scheduling time complexity, and outline two ways in which this limitation can be alleviated.
5.4 Reducing Scheduling Time Complexity

We have paid a price, in terms of scheduling complexity, to achieve better scheduling. We believe this is justified and beneficial because

1. the embarrassingly data-parallel nature of many data mining tasks allows us to create sufficiently large tasks without unduly limiting parallelism

2. the acquisition of a resource is often a costly process requiring both access to the database server and subsequent transformations e.g., a resource could be a precomputed multi-dimensional aggregate.

Nevertheless, we would like to reduce the time complexity of the scheduling operation without sacrificing performance. In this section, we propose two approaches (Sections 5.4.1 and 5.4.2) to reduce the time complexity of scheduling.

5.4.1 Reducing the number of tasks

Merging tasks into a smaller number of mega-tasks can reduce the time complexity. While we want $|T| > |S|$ for load-balancing purposes, having $|T| >> |S|$ makes scheduling harder without substantially improving load-balancing. The intuition underlying the merging is to aggregate those tasks into mega-tasks that have as much commonality in their resource requirements as possible.

Problem Definition. Let $G = (T \cup R, E)$ be a bipartite graph with vertices $T \cup R$ and edges E. An edge $e = (x, y) \in E$ \leftrightarrow $x \in T \land y \in R$. Nodes in T represent tasks, nodes in R represent resources and an edge from t to r indicates that task t requires resource r. Let $C < |T|$ be the desired number of mega-tasks. Let T' be an exhaustive and mutually exclusive set of subsets of T i.e., $T' \subset 2^T$ such that $t_i', t_j' \in T' \Rightarrow t_i' \cap t_j' = \phi \land \cup_{i \in T'} = T$ and 2^T is the power set of T. Let $r(t) \subseteq R$ be the set of resources required by task t i.e., $r \in r(t) \Rightarrow (t, r) \in E$. Ideally, there would be a high degree of overlap between the resources required by the tasks in a mega-task. This is formalized in Problem 5.1.

Problem Definition 5.1 Given $G = (T \cup R, E)$, C, and g, find $T' \subset 2^T$ such that $|T'| = C$ and $\sum_{t' \in T'} | \cup t'(t) |$ is minimum.
Algorithm for Problem 5.1 We have been unable to find an efficient solution to Problem Definition 5.1. Our heuristic approach is a simple, extension to the algorithm we used for resource-aware scheduling. We create as many “dummy servers” as the number of mega-tasks required. We make these dummy servers requests tasks in order. On completion, the set of tasks assigned to a given “dummy server” constitutes a mega-task. While expensive, this processing step can be done off-line and needs to be done only once for a given instantiation of R, T and S and the resource dependency $R(t)$.

5.4.2 Overlapping Scheduling with Task Execution

The scheduler could determine the next task to execute for each processor while waiting for a task request. Alternatively, it could order the processors in the likelihood of their being the next processor to make a request (based on when the processor last requested a task) and select the best task for the processors in that order.

6 Experimental Analysis

In this section, we examine the performance of the D-DOALL primitive on 2-dimensional Discretization and Clustering\footnote{In fact we have evaluated the D-DOALL on one other application as well, similarity discovery in datasets [PO00]. The results obtained from this application closely mirror the results we obtained for 2-D Discretization, and in the interests of space we have not included them.}. We also provide a glimpse of why support for interactivity and specifying task order is essential for applications like clustering.

All experiments were performed on a client and up to four compute servers each a dual 200 MHz Intel Pentium Pro system running Windows NT 4.0 with 256 MB RAM. For every experiment, numbers reported were averaged over 16 runs at different times of the day.

6.1 2-D discretization

In the process of growing a decision tree [Qui93], the problem is to determine which leaf node to split and for each leaf node, which attribute to use for the decision at that node. Consider the computation at a node. While typically, a single attribute is used as the decision variable, one can well consider extensions to more than one base attribute (e.g., $X > 5 \land Y < 6$) as long as
the decisions remain simple [PSV98]. Limiting oneself to selecting base attributes pair-wise, the
problem is to determine $f(x_i, x_j)$ for all x_i and for all pairs x_i, x_j, where $\{x_i\}$ are the attributes
and $f(x_i, x_j)$ measures the goodness of x_i, x_j as a decision attribute. This problem is referred
to as 2-Dimensional Discretization. We evaluate our scheduling algorithms on a single node split
using 2-Dimensional (all pairs x_i, x_j) Discretization where the evaluation function $f(x_i, x_j)$ used
is Entropy. Evaluating any pair of attributes involves 3 steps, obtaining the data involving the two
attributes, computing the probability density (pdf) estimate, searching for the optimal (determined
by goodness function; Entropy) cut-point.

6.1.1 Effect of Locality Based Scheduling

Scheduler Performance (4 compute servers)

![Scheduler Performance Graph]

Figure 9: Locality Based Scheduling Performance

In this experiment we evaluated the effect of our scheduling strategies on a synthetic dataset
XOR [PSV98] \(^2\) with N (base) +1 (goal) attributes, where N was varied from 8 to 25, and 100000
instances. Each pair-wise evaluation of the N base attributes is independent from the other and
is executed as a D-DOALL loop. Resources (data) for any evaluation required the corresponding
base attribute columns and the goal attribute column which were obtained from the dataserver.
The corresponding task-resource matrix was encoded and passed to the D-DOALL primitive for the
locality based scheduling algorithms.

\(^2\)details of dataset generation can be found from the cited article
Once a task (evaluating a base pair) is assigned to a compute server, that compute server determines if the resources required are present locally. If not, it goes and fetches the resources from a central data server. On receiving a request, the data server (refer section 2) generates the resource (row/column) on the fly and ships it to the corresponding compute server. Once the resources are acquired, the compute server places it on a local data cache and executes the task.

Results are presented (refer Figure 9) for 3 scheduling algorithms, i.e., simple scheduling, local resource aware scheduling and global resource-aware scheduling. From the results we see that local resource scheduling outperforms simple scheduling by 5-10%. Global resource aware scheduling outperforms local resource aware scheduling anywhere from 5-15% and outperforms simple scheduling by as much as 20%. The speedups obtained by the global scheduling algorithm in spite of the increase in scheduling time underline the importance of global affinity scheduling for such applications. Note that these results reflect total running time without the optimizations for reducing scheduling time presented in Section 5.4.

In terms of raw speedup global resource scheduling generates a speedup of 3 resulting in an efficiency of 75%. This lower efficiency is due to two reasons. First, there is contention at the data server. Second, with more number of processors the total number of resources acquired is more (attribute columns are replicated).

6.2 Clustering

Clustering is a commonly used data mining technique which partitions the attribute space, from which the data is drawn, into regions of similarity [FPSS96]. The assignment of instances to classes (or clusters) could be deterministic (all instances in a region belong entirely to that class) or probabilistic (every instance belongs to every class to an extent determined by its location in the attribute space). Determining how similar two instances can be done either by defining a metric in the attribute space or by postulating the existence of probability density models. Search techniques are often used to find the best clustering, since efficient algorithms do not exist in most cases. These search algorithms are in general, computationally expensive. Searching for the best number of clusters to describe the data is one of the more expensive aspects of the search process. In this paper, we use the cross-validated likelihood strategy of [SGIF97] with $M = 40, \beta_c = 0.5$. M is the number of searches over which the cross-validated likelihood is averaged. β_c is the fraction of the data used to estimate the model and $1 - \beta_c$ is the fraction used to evaluate the cross-validated
likelihood.

6.2.1 The Need for Incremental Reporting and Task Ordering

![Graph showing the improvement in cross-validated likelihood as J increases.]

Figure 10: Improvement in cross-validated likelihood as J increases

The motivation for making data mining algorithms report their results incrementally and having parallelization primitives that provide this feature is evident from the following study. The search for the most appropriate number of classes is parallelized over different workstations using the interactive D-DOALL primitive (Section 3). We generated a synthetic data set with $I = 2^{16}$ instances. Each of $K = 3$ independent attributes was modeled independently as a mixture of $J = 8$ Gaussians. We searched for the best J in $[1..32]$. None of the searches for $J > 19$ converged. Given that the tasks are handed out in order of increasing J, we can see that the marginal improvement in the ability to describe the data set begins to fall off around $J = 8$. Providing feedback to the user in the form of Figure 10 allows the user to terminate searches for higher J when he/she feels that the incremental improvement is not worth the additional complexity.

Being able to specify the desired order of task execution is important since one is often biased towards choosing simpler clusters (small J). This is an important scheduling characteristic of many data mining algorithms. Namely, that while there may be a large number of hypotheses to be explained, one often desires to impose an ordering in the exploration of those hypotheses.
6.2.2 Speedup obtained using D-DOALL

In this section, we present our results on the use of D-DOALL to parallelize the search for the best number of classes. The experimental setup is as follows. We searched for the best number of classes in [2...8] using the cross-validated likelihood strategy with \(M = 20, \beta_c = 0.5 \) [SGIF97]. The data set used was the adult data set with \(I = 32561 \) instances [MM96]. The client was a 2 \times 200 MHz Pentium Pro machine running Windows NT 4.0. The remote compute servers were 4 \times 200 MHz Pentium Pro machine running Windows NT 4.0. Our results are in Figure 11. The ideal time line in the figure uses the time when the entire computation happens on the client (1 \times 2-proc (Local)) as the baseline and then computes the ideal time (assuming linear speedup) for the other configurations. We see from from the figure that the overhead of D-DOALL is small and that speedup is almost linear.

7 Conclusions and Future Work

In Section 4.4.2 and Section 4.5, we introduced scheduling parameters \(\alpha \) and \(\beta \), the values of which were set somewhat arbitrarily. It would be interesting to see if the scheduler could learn the optimal values of \(\alpha \) and \(\beta \) based on the actual scheduling decisions it makes and the quality of those decisions. The algorithms of Sections 4.4.2, 4.5 and 4.5 could be improved and their analysis tightened. An exact solution to Problem Definition 5.1 would also be useful. As part of ongoing work we are
evaluating the primitive on Feature Selection, as well as from applications in other domains (such as interactive vision).

We would like to thank Ramana Venkata for many useful discussions on this work.

References

S. Parthasarathy, and S. Dwarkadas. Shared State for Client-Server Data Mining. First SIAM International Conference on Data Mining (SDM01), to appear.

S. Parthasarathy, and M. Ogihara. Clustering Homogeneous Distributed Datasets.. Fourth Practical applications of Knowledge Discovery and Data Mining (PKDD), 2000.

