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Abstract

In data mining, sampling has often been suggested as an
effective tool to reduce the size of the dataset operated at
some cost to accuracy. However, this loss to accuracy is
often difficult to measure and characterize since the exact
nature of the learning curve (accuracy vs. sample size) is
parameter and data dependent, i.e., we do not know apriori
what sample size is needed to achieve a desired accuracy
on a particular dataset for a particular set of parameters.
In this article we propose the use of progressive sampling to
determine the required sample size for association rule min-
ing. We first show that a naive application of progressive
sampling is not very efficient for association rule mining.
We then present a refinement based on equivalence classes,
that seems to work extremely well in practice and is able to
converge to the desired sample size very quickly and very
accurately. An additional novelty of our approach is the
definition of a support-sensitive, interactive measure of ac-
curacy across progressive samples.

1 Introduction

As our ability to collect, store, and distribute huge
amounts of data increases with advancing technology,
discovering the knowledge hidden in these ever-growing
databases has become a pressing problem. This problem re-
ferred to as data-mining, an effort to derive interesting con-
clusions from large bodies of data, is an interactive process.
In fact, interactivity is often the key to facilitating effective
data understanding and knowledge discovery. In such an
environment response time is crucial. However, extracting
knowledge from these massive databases is a compute and
I/O intensive process which makes the task of guaranteeing
quick response times difficult.

In order to to minimize the I/O traffic involved in such
data-intensive applications researchers have evaluated the

�
This work was partially supported by an Ameritech Faculty Fellow-

ship.

viability of using sampling[6] to reduce the dataset size.
While such methods have shown quite a lot of promise it has
been observed by several researchers[14, 15, 20] that it is
often very difficult to quantify, apriori, the quality of the re-
sults obtained for a given sample size. Recently, to address
this problem some researchers have proposed and evaluated
progressive sampling[14] for select data mining tasks. Pro-
gressive sampling starts with a small sample and uses pro-
gressively larger ones until model accuracy no longer im-
proves beyond a user specified threshold. In this paper we
study progressive sampling methods as they apply to asso-
ciation rule mining, a key data mining task. Realizing an
efficient method to progressively sample a dataset for asso-
ciation rule mining poses several challenges.

First, and foremost, one needs to define a notion of
model accuracy. In other words, for a particular dataset how
does one define how good the sample is? This goodness cri-
terion should be sensitive to relevant interaction parameters
(e.g. support, confidence, important items1 to the user) as
well as the inherent properties of the dataset in question. A
naive approach could be to compare the set of associations
generated by the sample with the set of associations gener-
ated on the entire dataset. Obviously, this is self-defeating
and does not take into account aspects of user interaction.

Second, while defining a notion of model accuracy is im-
portant, one must also be able to compute it efficiently. Zaki
et al[20], have observed, that at low sample sizes, there is
a tendency to detect a large number of false positives. This
property can limit the effectiveness of progressive sampling.

Third, as noted by Provost and Kolluri [15] ”most discus-
sions on sampling assume that producing random samples
efficiently from large datasets is not difficult. This is simply
not true.”. In fact most implementations require O(

�
) time

where
�

represents the size of dataset and not the sample
size ( � ). Naive implementations often may be much worse.
Note, that one cannot afford to spend O(

�
) time to generate

1For example a user may be interested in associations pertaining to a
specific item (say diapers).



each progressive sample.
We address these three problems in the context of pro-

gressively sampling for association rules. Specifically our
contributions are:

� A novel measure of model accuracy for progressively
sampling association rules. The measure is designed
in such a way to be sensitive to user parameters and
interactions while not requiring execution on the entire
dataset.

� An efficient technique for identifying the optimal sam-
ple size. This key result is based on the identification
and tracking of a representative set of frequent itemsets
(a small subset of the entire set of frequent itemsets).
Essentially the computational element (computing the
associations for a given sample size) is reduced sig-
nificantly enabling faster convergence to the optimal
sample size. This technique also addresses the high
false-positive problem for low support values.

� An efficient technique based on asynchronous I/O op-
erations and a novel application of a well known sam-
pling methodology to improve the efficiency of gener-
ating a random sample, as perceived by the processor.

The rest of this article is organized as follows. In Section 2
we provide some background on progressive sampling and
association rules. In Section 3 we present our progressive
sampling approach. We empirically evaluate the proposed
approach on synthetic and real datasets in Section 4. Finally
we conclude with directions for future work in section 5.

2 Background
Discovery of association rules is an important problem in

database mining. The prototypical application is the analy-
sis of sales or basket data [3] although more recently it has
been adopted in the domains of scientific computing, bioin-
formatics and performance modeling. The problem can be
formally stated as: Let
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be a set of �

distinct attributes, also called items. Each transaction � in
the database � of transactions, has a unique identifier, and
contains a set of items, such that ��� � . An association
rule is an expression ����� , where � 
 ��� � , are sets of
items called itemsets, and �! "� �$# . Each itemset is said
to have a support � if �&% of the transactions in � contain
the itemset. The association rule is said to have confidence'

if
' % of the transactions that contain � also contain � ,

i.e.,
' � �)(*�,+-�/.10 �)(2�3. , i.e., the conditional probabil-

ity that transactions contain the itemset � , given that they
contain itemset � .

Data mining of association rules from such databases
consists of finding the set of all rules which meet the user-
specified minimum confidence and support values.

Database Layout: There are two possible layouts of the
database for association mining. The horizontal layout con-
sists of a list of transactions, where each transaction has an
identifier followed by a list of items. The vertical layout
consists of a list of items where each item contains a list
of transactions that transacted on that particular item. Ap-
proaches based on the horizontal format include the popular
Apriori algorithm[3] and its variants. The Apriori algorithm
uses the downward closure property of itemset support to
prune the itemset lattice - the property that all subsets of
a frequent itemset must themselves be frequent. Thus the
frequent k-itemsets are used to construct candidate (k+1)-
itemsets. A pass over the data is made to identify which
of the candidate (k+1)-itemsets are actually frequent. This
process is repeated till there are no more frequent sets.

The vertical format has the advantage that the support
for candidate k-itemset can be computed by simple tid-list
intersections. The tid-lists cluster relevant transactions, and
avoid scanning the whole databases to compute support, and
the larger the itemset, the shorter the tid-lists, resulting in
faster intersections[21]. An additional optimization of com-
pressing the vertical lists results in additional gains due to
lower memory and I/O traffic[4, 17]. Note that sampling in
the vertical format will be inefficient. Essentially sampling
in the vertical context will necessarily have to keep track of
which transactions are in the sample and which are out and
one would need to to scan through each tid-list and mark
the transactions in the sample and those out of it. One can
of course sample in the horizontal format and then convert
to the vertical format on the fly.

Equivalence Class Partitioning: One way to improve
the vertical approach is to use it in conjunction with equiv-
alence class partitioning. Let the set of large two-itemsets,4 �

, be
�
AB, AC, AD, AE, BC, BD, BE, CD, DE

�
. Equiva-

lence class partitioning partitions these itemsets by their (k-
1 length where k= 2 in the above example) prefixes result-
ing in the following four partitions: �65 = [A] =

�
AB, AC,

AD, AE
�
, �67 = [B] =

�
BC, BD, BE

�
, �68 = [C] =

�
CD
�
,

and �:9 = [D] =
�
DE
�
. The same partitioning scheme can

be recursively repeated to find all the associations. For in-
stance, in the above example, partition [B] yields candidates�

BCD,BCE,BDE
�
. Assuming that all of the candidates are

deemed frequent then the level 3 partitions for [B] are � 7;8
= [BC] =

�
BCD,BCE

�
, and � 7<9 = [BD] =

�
BDE

�
. The

advantage of this approach is that the algorithm can process
an entire equivalence class partition before proceeding to
the next partition. This improves memory locality and min-
imizes I/O traffic in the ECLAT algorithm[21], an approach
based on the above equivalence class partitioning.

Note, that past work has not considered using the equiv-
alence class idea within the context of sampling. For the
present work it is important to define a notion of an equiv-
alence superclass. Informally, an equivalence superclass
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is defined as the set of all frequent itemsets that can re-
cursively be enumerated from a given partition. From the
above example, the equivalence superclass from partition

� 7 , denoted as � � 7 =
�
BC,BD,BE,BCD,BCE,BDE

�
.

Sampling for Associations: While several authors have
proposed various strategies on the use of sampling for
KDD[8, 14, 11] and database tasks[12], we limit the dis-
cussion in this section to those relevant to association min-
ing. Toivonen [18] presents an association rule mining al-
gorithm using sampling. The approach can be divided into
two phases. During phase 1 a sample of the database is ob-
tained and all associations in the sample are found. These
results are then validated against the entire database. To
maximize the effectiveness of the overall approach, the au-
thor makes use of lowered minimum support on the sample.
Since the approach is probabilistic (i.e. dependent on the
sample containing all the relevant associations) not all the
rules may be found in this first pass. Those associations that
were deemed not frequent in the sample but were actually
frequent in the entire dataset are used to construct the com-
plete set of associations in phase 2. A detailed theoretical
analysis of sampling (using Chernoff bounds) for associa-
tion rules was presented by Zaki et al [20]. Chernoff bounds
provide information on how close is the actual occurrence
of an itemset in the sample as compared to the expected
count in the sample. Based on itemset frequencies, using
Chernoff bounds one can obtain a sample size[20]. How-
ever, the sample size is independent of the original dataset
size and can be quite large, sometimes larger than the orig-
inal dataset! Empirical evidence in the same paper also
showed that Chernoff bounds may be too pessimistic for
association mining. It was also shown that sampling can
be effective for association mining if the sample size were
known apriori for the corresponding dataset and input pa-
rameters. However, determining the optimal sample size
was left as an open problem. Note, that determining the
optimal sample size efficiently can significantly improve on
the overall performance of Toivenen’s approach[18] since
with a good estimate one could minimize the computational
and I/O aspects of the second pass.

Progressive Sampling: In order to quickly estimate the
optimal sample size, researchers have recently turned to
progressive sampling. Before we detail this procedure we
first define the notion of a learning curve. A learning curve
is a mapping between sample size and model accuracy. Typ-
ically a learning curve is depicted with the vertical axis rep-
resenting the accuracy of the model and the horizontal axis
representing the sample size. Most learning curves typi-
cally have steeply sloping portion early in the curve, and a
plateau late in the curve[14, 5]. The cost-performance trade-
off is best at the knee of the curve. Such curves exhibit the
property that the slope of the curve is monotonically non-
increasing with n (excepting for small local variance). Most

learning curves exhibit the above behavior but some curves
can misbehave especially at small sample sizes[10].

The goal of progressive sampling is to start with small
samples and progressively increase them as long as model
accuracy improves sufficiently. Using such a technique one
can identify the knee of the learning curve using basic slope
characterization across recently evaluated samples. One
problem in the association rule mining context is how does
one quantify model accuracy? A simple metric would be
to compare the set of associations found for a given sample
size with the set of associations found for the entire dataset.
However, to obtain the latter we would have to run the al-
gorithm on the entire dataset!

The efficiency of progressive sampling is governed by
the average case execution time performance of the algo-
rithm, and by the sampling schedule. In the case of associ-
ation rule mining algorithms while the worst case complex-
ity is exponential the average case behavior typically tends
to be linear, or in some cases quadratic. The issue of de-
termining an optimal sampling schedule was addressed by
Provost et al[14], where the authors show that a simple geo-
metric sampling schedule is efficient in an asymptotic sense
for most induction algorithms with a run time complexity of
O(n) or worse as long as the maximum sample size is �;0�� .

However, the above result is not useful if the desired ac-
curacy is met only at a a sample size of 70% (for a linear
time algorithm). This reduction (from 100%) may still re-
sult in significant performance benefits. Another problem
with the above theoretical model is that sampling overheads
are ignored. Efficiently obtaining a sample from a large
dataset, is often ignored by most researchers as pointed out
by Provost and Kolluri[15]. If one were to account for this
the benefits of progressive sampling would decrease. An-
other overhead, induced within the context of association
rules, is the avalanche effect of detecting false positives at
very small sample sizes (see Zaki et al for details[20]). We
address these issues in the next section.

3 Methodology

In this section we present our approach for efficient pro-
gressive sampling of association rules. We first describe our
measure of model accuracy which is based on the notion of
self-similarity of associations across progressive samples.
A novelty of the proposed measure is that it is functionally
dependent on user input parameters (support, constraints
etc.). We then identify a representative subset of frequent
itemsets such that the behavior of our measure of model
accuracy on this representative subset mimics the behavior
of our measure on the entire set of associations. The final
problem we address relates to that of sampling overhead.

Model Accuracy: Absolute model accuracy, for a given
sample is difficult to measure without running the algorithm
on the entire dataset. Since this is not possible to do due to
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efficiency constraints we define a measure of accuracy that
is based on the following key intuitions:

For progressive samples � � and � � , where size( � � ) �
size( � � ), the self-similarity between the set of associations
generated under the two samples is likely to be low during
the growth phase and is likely to be much higher during the
“plateau” phase. Therefore identification of the knee of the
curve can be done by measuring the self-similarity between
progressive samples.

We now define the our notion of interactive self-
similarity: Let � and � respectively be a the set of frequent
itemsets for a database sample � � and that for a database
sample � � . For an element ��� � (respectively in � ), let���	��
� (�� . (respectively ���	��
�� (�� . ) be the frequency of � in� � (respectively in � � ). Our metric is:

��������������� ��!#"%$'&)()*,+ -/.1032546 ��798;:=<?>�@BA5C � ��DE!F8G>�@5ABC � ��D	!�< HI�JLKNMOI
where P is a scaling parameter. The parameter P has a de-
fault value of Q and can be modified to reflect the signifi-
cance the user attaches to variations in supports. For P �SR
the similarity measure is identical to T 5VU 7 TT 5VW 7 T , i.e., support
variance carries no significance. � � � values are bounded
and lie in [0,1]. � � � also has the property of relative or-
dinality, i.e., if � � � (�X 
�Y .Z� � � �-([X 
�\ . , then X is more
similar to

Y
than it is to

\
. Note, that while the above for-

mulation does not explicitly consider correlations between
itemsets (e.g. two itemsets (ABEK, AEFK) that have many
items in common are not treated differently), they are ac-
counted for implicitly as all itemsets that can be formed by
the common items (A,E,K) are part of the summation.

An important point raised by Das, Manilla and
Ronkainen[7], while evaluating the similarity between two
attributes was that using a different set of external probes to
measure similarity could potentially yield a different simi-
larity measure. In our case the action of modifying the ex-
ternal probe set corresponds to modifying the association
sets evaluated over different samples of the input database.
This is achieved either by modifying the minimum sup-
port or by restricting the search for associations to those
that satisfy certain conditions (Boolean properties over at-
tributes) [2]. Note that the optimal sample size (the knee of
the curve) can vary for a different set of parameter values.

Picking a Representative Set: The above metric sug-
gests using the entire association set from consecutive sam-
ples to measure the self-similarity between progressive
samples. However, as observed earlier, computing complete
association sets for each sample may eventually defeat the
purpose of sampling since evaluating each sample has vari-
ous overheads associated with it. To overcome this problem
what we need is a representative class of itemsets which
has a behavior similar to the self-similarity curve of the
original set of associations. Moreover, this representative

class of itemsets should satisfy the criterion that it should
be efficient to compute. Given the above requirement, we
evaluated three possible options for a representative set: a
random sample of the set of frequent itemsets; a level-wise
(horizontal–i.e., all ] -itemsets for a given ] ) split of the fre-
quent itemset lattice; an equivalence-superclass (vertical)
split of the frequent itemset lattice.

The first option for a representative class is infeasible. A
truly random sample of the set of frequent itemsets while
ideal from a statistical perspective, is impossible to gen-
erate, without first generating the set of frequent itemsets
and therefore self-defeating. The second option is imprac-
tical for higher order splits (the set of all k-itemsets where
k is large) as again one has to compute pretty much all the
frequent itemsets before reaching the higher order split in
question. We found empirically that using lower order splits
tends to result in an unreliable over-estimation (i.e. pre-
mature convergence) of the similarity between subsequent
samples and was therefore not useful. Detailed analysis of
these options was considered and the reader is refered to an
extended version of this article for details[13].

Our proposed approach is to use equivalence super-
classes (vertical splits) generated from the most frequent
item(s) as representative sets. We considered using ran-
domly selected equivalence superclasses as the represen-
tative class of itemsets but realized that these could suffer
from the same problem as the horizontal split approaches.
The key intuition behind using the most frequent item is
that such an equivalence super-class in all likelihood most
completely captures the entire set of frequent itemsets and
the distribution of associated supports across all levels of
frequent itemsets [13]. As we shall see from the empiri-
cal results in the next section this representative class based
approach yields a very good predictor of the self similarity
measure. The other nice feature of this representative class
is that it can be quickly computed, with some straightfor-
ward modifications current-day vertical-set approaches[13].

Note, no changes are required to the self-similarity mea-
sure, we are just replacing the base association set with the
representative set as determined by the first (few) equiva-
lence class partition(s). However, the representative class
selection is somewhat dependent on the similarity measure.
For instance if the similarity metric, as discussed earlier,
were restricted to those itemsets including a particular item
(say A), then the best equivalence super-class to choose
might be the equivalence super-class generated by that par-
ticular item (A). Also, while we have argued intuitively[13],
that equivalence super-classes based on the most frequent
item(s) are likely to be good representative sets in general,
other splits, based on the constraints imposed on the sim-
ilarity measure, may be better and are being investigated.

Efficient Sampling Methodology: Provost and
Kolluri[15] point out that most sampling algorithms
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require O(N) or greater time to execute where N is the size
of the database and that researchers rarely account for this
overhead. For generating samples of the database we use
the Method A algorithm presented by Vitter[19]. A simple
algorithm for sampling generates an independent uniform
random variate for each record to determine whether that
record should be chosen for the sample. If m records have
been chosen from the first t records then the next record
will be chosen with probability (n-m)/N-t. This algorithm
generates N random variates. Method A significantly
speeds up the sampling process by efficiently determining
the number of records to be skipped before the next one
is chosen. It generates exactly � random variates. With
appropriate support for database indexing the method A
scheme allows the sampling procedure to take O( � ) time2.

Note that even with direct indexing creating a sample
still creates some level of overhead. This overhead can be
split into two components computational overhead (deter-
mining which transactions are in the sample) and I/O over-
head (reading in said transactions). The I/O component
can be overcome with suitable systems support in the form
of asynchronous I/O, a technique which allows I/O opera-
tions to overlap with useful computation. Essentially one
can overlap the I/O required for the next progressive sam-
ple with the computation required for processing the cur-
rent sample. In other words while we compute the asso-
ciation set for the current sample one can do the I/O for
the next sample size (in the sampling schedule). With ac-
tive disk-like approaches[1, 16], one can move the compu-
tational overhead associated with sampling off the critical
path as well. This approach lends itself to accessing data
over the network as well, since even that can be effectively
overlapped with useful computation.

Algorithm Details: The basic steps to the progressive
sampling approach are highlighted in Figure 1. We present
two approaches, one based on estimating self-similarity be-
tween the current sample and the subsequent sample in the
schedule (RC-SS), and the other based on estimating self-
similarity between the current sample and the entire dataset
using the first k equivalence super-classes (RC-S).

Step 0 for the RC-S algorithm computes the representa-
tive set on the entire dataset. Step 1 for the RC-SS algo-
rithm computes the representative set on the lowest sam-
ple size in the schedule. Step 2 is an iterative for loop.
Each iteration of this for loop first computes the next sam-
ple (Step3) in the schedule. Then the representative set
for this sample is constructed (Step4). After this the self-
similarity measure is computed. For the RC-SS algorithm
we compute the self similarity between this representative
set and the previous one. For the RC-S algorithm we com-
pute the self similarity between this representative set and

2Note that if each transaction in the database is directly indexable prov-
ing this bound for the worst-case is trivial.

Step 0: Compute representative set
on entire dataset (RC-S only)

Step 1: Compute initial sample and
representative set on sample. (RC-SS only)

Step 2: For each sample size in the schedule:
Step 3: Compute sample.
Step 4: Compute representative set.
Step 5: Is convergence criteria met?
Step 6: If yes set effective sample

size (ESS) and break;
Step 7: If no continue;
Step 8: Compute the rest of the entire set

of associations for the ESS.

Figure 1. Proposed Approach

the one pre-computed in Step 0. If the similarity met-
ric is above a user-specified threshold, then convergence
is achieved (Step 5). For RC-SS we modified the conver-
gence criteria slightly after viewing empirical results. We
found that the self-similarity curve for RC-SS is not always
well behaved (is non-monotonic). For this algorithm we
declared convergence only if the similarity metric is above
the user-specified threshold for two consecutive iterations.
This avoids premature convergence due to local variances
and also protects against the possible misbehavior of self-
similarity curves (found mainly at small sample sizes). If
the convergence criteria is met we break out of the for loop
(Step 6) else we continue (Step 7). In Step 8, we compute
the overall association set for the determined sample size.

4 Experimental Methodology
In this section we empirically evaluate the proposed

methodology on several synthetic and real datasets. We
first describe the experimental setup (machine configura-
tion, dataset properties etc.). We then evaluate the proposed
measure of model accuracy: self similarity between consec-
utive samples; and the impact on this measure when using
the first equivalence superclass as a representative set. We
then quantify the performance gains from using this repre-
sentative class (as opposed to the entire set of associations).
At the end of this section we quantify the gains from our
sampling methodology.

Experimental Setup: We used three synthetic datasets
generated from the IBM dataset generator program[3].
These datasets mimic the transactions in a retailing environ-
ment. The properties of the synthetic datasets are inherent
in the names. The number following the T refers to the av-
erage transaction length, the number following the I refers
to the average maximal potentially frequent itemset size, the
alpha-numeric-code following the D refers to the total num-
ber of transactions (1M means 1 Million). We also used two
real datasets for our experiments. The first real dataset is the
Gazelle dataset which formed a part of the KDD Cup 1999
competition. The properties of these three datasets are de-
scribed in Table 2. The second real dataset is the VBook

5



dataset which is a dataset from a prominent online book-
store retailer in South America.

Database �����
�

Size
T10I4D5M 5000000 260MB
T8I5D25M 25000000 1.25GB
Gazelle 59602 1.35MB
Vbook 136809 4.3MB

Figure 2. Database properties
All experiments unless otherwise noted, were performed

on a dual pentium node machine, 1GHz Pentium III, having
512 MB RAM and running Linux 2.4. For all the experi-
ments we used a geometric sampling schedule up to 40% of
the original dataset and an arithmetic progressive schedule
from that point on, if required.

Impact of Representative Set on Self Similarity: The
self similarity plots for all the datasets are described in Fig-
ure 3. In each graph the Y-axis corresponds to the self sim-
ilarity and the X-axis corresponds to the sample size. In
each graph there are four plots, the RC-S and RC-SS plots
have already been explained in the previous section. The A-
S plots (in bold) is the learning curve that we are trying to
estimate. They represent the naive (impractical) approach
of comparing the entire set of associations generated by the
sample with the set of associations generated by the entire
dataset. The A-SS plots mirror the procedure described for
R-SS, the only difference being that the self-similarity mea-
sure is computed on the entire set of associations.

On viewing the plots for the real datasets (Figures 3a
and 3b) one can observe that the plots for the representa-
tive set (prefix RC) closely follow the plots for the entire
set of associations (prefix A) for the corresponding support
values considered. For the gazelle dataset, note that if we
required a self similarity cut off of 0.9, for 0.1% support
we would never obtain this value (even if we went the dis-
tance), whereas at 0.25% support (not shown, see[13] for
details) this could be achieved at a 50% sample size. This
highlights the fact that the user-specified parameters has an
important role to play in determining whether sampling is
useful or not and if so at what level. Overall both plots fol-
low the expected pattern of low self similarity at smaller
samples, and higher self similarity at larger samples. The
phase transition from lower self-similarities to higher self-
similarities coincide with the knee of the learning curve.

The results for the synthetic datasets are better (see Fig-
ures 3c-d). The shape of the self similarity plots for the
representative class almost exactly mirror the self similarity
plots for the entire set of associations. Unlike the plots for
the real datasets, the self similarities are quite high even at
low sample sizes. This is mainly due to the fact that the syn-
thetic datasets are much larger than the real datasets there-
fore the absolute number of transactions for a given sample
size (expressed as percentage of the original) is much larger.

Overall the RC-S plots most closely mirrors A-S plots.
Another interesting trend that is observed across both real
and synthetic datasets is that there seems to be a relatively
consistent overestimation or underestimation of the self-
similarity across RC and A graphs. For example in Fig-
ure 3a the RC curves consistently underestimate their A-
curve counterparts. This would seem to indicate that the
curve we want to estimate (A-S) can be best estimated by
using the RC-S curve and a translation factor that can be de-
rived from the translations computed from the RC-SS and
A-SS curves. This strategy is currently being evaluated.

Impact of Representative Set on Performance: In this
section we highlight the performance gains from using the
representative class of itemsets to compute self similarities
over using the entire set of associations. Figure 4 plots
the cumulative execution time for different sample sizes for
the datasets under consideration. The cumulative execution
time is the execution time of the algorithm (RC-S or RC-SS)
when the convergence criteria is satisfied at the correspond-
ing sample size. The Baseline Execution Time corresponds
to the execution time of the association mining algorithm
on the entire dataset. Essentially the break even point for
progressive sampling, when computing on the entire set of
associations (represented by the prefix A) at 0.5% support,
is when the cumulative execution time intersects with this
baseline. For the VBook dataset the break even point when
using the entire set of associations is reached at a sample
size of around 10% for this dataset at this value of support.
The poor performance here can be traced to the fact that for
this support value at low sample sizes the basic association
mining algorithm detects a large number of false positives.
However, for the representative class approach, after deter-
mining the effective sample size, the algorithm still has to
be completely executed on that sample size (sans the rep-
resentative class). For this dataset if the effective sample
size determined was 50% (corresponding to a value of 0.9
in the RC-SS (RC-S) plot from Figure 3b) then the total ex-
ecution time is equal to 1.1s (1.15s for RC-S) which is still
below the baseline of 1.5s. This result is especially encour-
aging and shows that even for a small dataset the approach
presented can be quite effective.

As can be observed from Figures 4b-c, the results on the
synthetic datasets are even better. For T10I4D5M for a self
similarity cut off of 0.95 or higher the optimal sample size
is 50% (this can be seen from Figure 3c). The RC-SS ap-
proach required a total of 448 (496 for RC-S) seconds to
compute the results (see Figure 4b). The approach using
the entire association set requires 1037 seconds (which is
above the baseline of 950s) to compute the same result. This
results in a factor of improvment of 2.4 (2.1 over the base-
line). For T8I5D25M (Figure 4c) for a self similarity cut off
of 0.95 or higher the optimal sample size is 10% (from Fig-
ure 3d). The representative class approach requires a total
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of 73.17 (125 for RC-SS) seconds to compute the results.
The approach using the entire association set requires 140
seconds to compute the same result. When compared with
the baseline execution time (1730s) the representative class
approach’s improvement factor is around 25.

Impact of Sampling Methodology: In Figure 5 we con-
sider the performance of the sampling methodology pre-
sented in Section 3. Figure 5a compares the cumulative
execution time performance of our the approach using the
representative class to identify the ideal sample size while
overlapping the sampling and I/O operations of the next
stage with the computation of the current stage. In Figure 5a
we compare the performance of ideal situation (where there
is no sampling overhead: TC-ideal) with the actual perfor-
mance with overlapping (TC-overlap) and without overlap-
ping (TC-nooverlap). For the overlapping computation we
used two scenarios, one where the processor handling the
I/O and sampling was a 300Mhz Pentium II3 (i.e. a more
realistic scenario for active disks with a much slower pro-
cessor than the compute processor) and the other where the
I/O processor was 1GHz (ideal baseline).

On viewing the graphs it is clear that the TC-ideal graph
and the TC-overlap (1GHz) are almost identical, reflecting
the fact that almost all of the sampling overhead is over-
lapped with useful computation (computing the association
set for the previous sample size). On relaxing the assump-
tion and allowing for the fact that the processor doing the
sampling and I/O is often much slower (300 Mhz) we ob-
serve a marginal drop in performance (slightly under 4%),
so still most of the sampling overhead is overlapped with
useful computation. Note that if we did not overlap the
sampling overhead with computation then we perform 10-
12% worse than the ideal (comparing the TC-Ideal and TC-
noverlap graphs). This experiment assumes the best pos-
sible sampling algorithm (the Sample A algorithm). We
further broke down the performance of the sampling over-
heads in Figure 5b for the two configurations (1GHz and
300Mhz). The performance of the naive algorithm (see Sec-
tion 3) is much worse than the Sample A algorithm.

5 Conclusions and Future Work
We have presented an efficient method to progressively

sample for association rules. Our approach relies on a novel
measure of model accuracy (self-similarity of associations
across progressive samples), the identification of a represen-
tative class of frequent itemsets that mimic (extremely accu-
rately) the self-similarity values across the entire set of asso-
ciations, and an efficient sampling methodology that hides

3We did not have a dual processor system where one processor was
fast and the other was slow. We timed the sampling overheads for each
of the different sample sizes for this dataset on the slower machine, and
we used these times (by precomputing the samples and busy waiting for
the necessary amount of time) while evaluating the performance on this
configuration.

the overhead of obtaining progressive samples by overlap-
ping it with useful computation. We evaluated the results
on a set of real and synthetic datasets. We extensively
benchmarked each aspect of our algorithm and obtained
uniformly good performance (several factor-fold execution
time improvements) across both real and synthetic datasets.
In the current work we have considered each sample to be
independent of the other. We would like to see if the pro-
posed method can be improved by using adaptive sampling
techniques[8]. Other directions of future work have been
outlined already in the text.
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