AN

;;Jﬂ,/|)|||lhjl',f|}'

O’REILLY*® DANIEL P. BOVET & MARCO CESATI

“fork-bomb” processes, the function considers the amount of memory eaten by
all children owned by the parent, too.)

Killing the victim should lose a small amount of work—it is not a good idea to
kill a batch process that has been working for hours or days.

The victim should be a low static priority process—the users tend to assign
lower priorities to less important processes.

The victim should not be a process with root privileges—they usually perform
important tasks.

The victim should not directly access hardware devices (such as the X Window
server), because the hardware could be left in an unpredictable state.

The victim cannot be swapper (process 0), init (process 1), or any other kernel
thread.

The select_bad_process() function scans every process in the system, uses an empir-
ical formula to compute from the above rules a value that denotes how good select-
ing that process is, and returns the process descriptor address of the “best” candidate
for eviction. Then, the out_of _memory() function invokes oom kill process() to send
a deadly signal—usually SIGKILL; see Chapter 11—either to a child of that process
or, if this is not possible, to the process itself. The oom kill process() function also
kills all clones that share the same memory descriptor with the selected victim.

The Swap Token

As you might have realized while reading this chapter, the Linux VM subsystem—
and particularly the PFRA—is so complex a piece of code that is quite hard to pre-
dict its behavior with an arbitrary workload. There are cases, moreover, in which the
VM subsystem exhibits pathological behaviors. An example is the so-called swap
~ thrashing phenomenon: essentially, when the system is short of free memory, the
PFRA tries hard to free memory by writing pages to disk and stealing the underlying
page frames from some processes; at the same time, however, these processes want
~ to proceed with their executions, hence they try hard to access their pages. As a con-
- sequence, the kernel assigns to the processes the page frames just freed by the PFRA
- and reads their contents from disk. The net result is that pages are continuously writ-
- ten to and read back from the disk; most of the time is spenr accessing the disk,
hence no process makes substantial progress towards its termination.

To mi igate the likelihood of swap thrashing, a technique proposed by Jiang and

[n 2004 has been implemented in the kernel version 2.6.9: essentially, a so-
;:alled swap token is assigned to a single process in the system; the token exempts the
 process from the page frame reclaiming, so the process can make substantial progress
and, hopefully, terminate even when memory is scarce.

The swap token is implemented as a swap_token_mm memory descriptor pointer.
When a process owns the swap token, swap_token_mm is set to the address of the pro-
cess's memory descriptor.

Implementingthe PFRA | 711

Immunity from page frame reclaiming is granted in an elegant and simple
have seen in the section “The Least Recently Used (LRU) Lists,” a page:
from the active to the inactive list only if it was not recently referenced. T
done by the page_referenced() function, which honors the swap token a
(referenced) if the page belongs to a memory region of the process th
swap token. Actually, in a couple of cases the swap token is not consider
the PFRA is executing on behalf of the process that owns the swap token, 2
the PFRA has reached the hardest priority level in page frame reclaiming

The grab_swap_token() function determines whether the swap token
assigned to the current process. It is invoked on each major page fault, nam
just two occasions: '

* When the filemap nopage() function discovers that the required paggﬂ
the page cache (see the section “Demand Paging for Memory Mappi
Chapter 16).

* When the do_swap _page() function has read a new page from a swap ares
the section “Swapping in Pages” later in this chapter). o

The grab_swap_token() function makes some checks before assigning the tol
particular, the token is granted if all of the following conditions hold:

* At least two seconds have elapsed since the last invocation of grab_swap to

* The current token-holding process has not raised a major page fault
last execution of grab_swap_token(), or has been holding the token since®
swap_token_default_timeout ticks. 3
* The swap token has not been recently assigned to the current process.

The token holding time should ideally be rather long, even in the order of i

because the goal is to allow a process to finish its execution. In Linux

token holding time is set by default to a very low value, namely one tick- Ho
the system administrator can tune the value of the swap_token_default_tineot
able by writing in the /proc/sysivm/swap_token_default_timeout file or by iS4
proper sysctl() system call.

When a process is killed, the kernel checks whether that process was
swap token and, if so, releases it; this is done by the mmput() function (8
tion “The Memory Descriptor” in Chapter 9).

Swapping

Swapping has been introduced to offer a backup on disk for unmapped
know from the previous discussion that there are three kinds of pages
handled by the swapping subsystem:

712 | Chapter17: Page Frame Reclaiming

