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Abstract

High-performance analytical data processing systems

often run on servers with large amounts of main mem-

ory. A common operation in such environments is com-

bining data from two or more sources using some “join”

algorithm. The focus of this paper is on studying hash-

based and sort-based equi-join algorithms when the data

sets being joined fully reside in main memory. We only

consider a single node setting, which is an important

building block for larger high-performance distributed

data processing systems. A critical contribution of this

work is in pointing out that in addition to query response

time, one must also consider the memory footprint of

each join algorithm, as it impacts the number of con-

current queries that can be serviced. Memory footprint

becomes an important deployment consideration when

running analytical data processing services on hardware

that is shared by other concurrent services. We also

consider the impact of particular physical properties of

the input and the output of each join algorithm. This

information is essential for optimizing complex query

pipelines with multiple joins. Our key contribution is

in characterizing the properties of hash-based and sort-

based equi-join algorithms, thereby allowing system im-

plementers and query optimizers to make a more in-

formed choice about which join algorithm to use.
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1 Introduction

Fueled by the economies of scale, businesses and gov-

ernments around the world are consolidating their data

processing infrastructure to public or private clouds. In

order to meet the stringent response time constraints

of interactive analytical applications, analytic data pro-

cessing systems running on these clouds aim to keep

the working data set cached in main memory. In fact,

many database vendors now offer dedicated main mem-

ory database appliances, like SAP HANA [13] and Or-

acle Exalytics [27], or have incorporated main-memory

technology, such as IBM Blink [5], to further accelerate

data processing.

While memory densities have been increasing, at the

other end of the motherboard, another big change has

been underway. Driven by power and heat dissipation

considerations, about seven years ago, processors started

moving from a single core to multiple cores (i.e. multi-

core). The processing component has moved even fur-

ther now into multi-sockets, with each socket having

multiple cores. The servers powering the public and pri-

vate clouds today commonly have multi-socket, multi-

core processors and hundreds of gigabytes of main mem-

ory.

This paper focuses on the workhorse operation of an

analytical query processing engine, namely the equi-join

operation. As is readily recognized, an equi-join oper-

ation is a common and expensive operation in analyt-

ics and decision support applications, and efficient join

algorithms are critical in improving the overall perfor-

mance of main-memory data processing for such work-

loads.

Naturally, there has been a lot of recent interest in

designing and evaluating main memory equi-join algo-

rithms. The current literature, however, provides a con-

fusing set of answers about the relative merits of dif-

ferent join algorithms. For example, Blanas et al. [6]

showed how the hash join can be adapted to single-

socket multicore main memory configurations. Then,

Albutiu et al. [2] showed that on multi-socket configu-



rations, a new sort-merge join algorithm (MPSM) out-

performed the hash join algorithm proposed in [6], but

their study did not evaluate hash-based algorithms that

are multi-socket friendly. At the same time, Balkesen et

al. [4] found that a hardware-conscious implementation

of the radix partitioned join algorithm can greatly im-

prove performance over the join algorithm proposed in

[6]. All of these studies are set against the backdrop of an

earlier study by Kim et al. [22] that described how sort-

based algorithms are likely to outperform hash-based al-

gorithms in future processors. Thus, there is no clear

answer regarding what equi-join algorithm works well,

and under what circumstances, in main memory, multi-

socket, multicore environments.

Previous work in this space has also largely ignored

the memory footprint of each join algorithm. Main

memory, however, is a precious resource in these “in-

memory” settings. The peak working memory that each

query requires is a key factor in determining how many

tenants can be consolidated into a single system. Algo-

rithms that use working memory judiciously allow more

tenants to simultaneously use a single system, and thus

lower the total infrastructure operating cost.

In this paper, we build on previous work as we adapt

the hash join algorithm by Balkesen et al. [4] for a multi-

socket setting. We consider the recently proposed mas-

sively parallel sort-merge (MPSM) join algorithm byAl-

butiu et al. [2], in addition to two more traditional sort-

merge join variants. Finally, we also experiment with a

sort-merge algorithm that implements a bitonic merge

network using SIMD instructions to exploit data-level

parallelism, as it was proposed by Kim et al. [22].

This paper makes three key contributions. First, we

characterize the memory access pattern and the mem-

ory footprint of each join algorithm. Second, we iden-

tify two common physical properties of the join input

and output that greatly impact the overall performance.

The two physical properties are (1) data being hash par-

titioned on the join key, and (2) data being pre-sorted on

the join key. This information is important for query op-

timization when considering queries with multiple joins.

Finally, we conduct a comprehensive experimental study

for each join algorithm in a main memory setting.

Our results show that the hash join algorithm in many

cases produces results faster than the sort-based algo-

rithms, and the memory footprint of the hash join al-

gorithm is generally smaller than that of the sort-based

algorithms. Sort-based algorithms become competitive

only when one of the join inputs is already sorted. Our

study concludes that to achieve the best response time

and consolidation for main memory equi-join process-

ing, it is necessary to take into account the physical prop-

erties of the inputs and the output, and it is crucial that

both hash-based and sort-based join algorithms are im-

plemented.

The remainder of this paper is organized as follows.

We introduce the join algorithms in Section 2, and pro-

vide implementation details in Section 3. We continue

with the experimental evaluation in Section 4. Related

work is described in Section 5, and Section 6 contains

our conclusions.

2 Parallel equi-join algorithms

In this section, we describe key main memory join algo-

rithms that have been recently proposed. We first briefly

present each algorithm, and then analyze how each al-

gorithm fares with respect to two factors: (1) memory

traffic and access pattern, and (2) working memory foot-

print.

We describe each algorithm assuming that the query

engine is built using a parallel, operator-centric, pull-

based model [17]. In this model, a query is a tree of op-

erators, and T worker threads are available to execute

the query. The leaves of the tree read data from the base

tables or indexes directly. To execute a query, each oper-

ator recursively requests (“pulls”) data from one or more

children, processes them, and writes the results in an out-

put buffer local to each worker thread. The output buffer

is then returned to the parent operator. Multiple worker

threads may concurrently execute (part of) the same op-

erator.

When the algorithm operates on a single source, such

as the partitioning and sorting algorithms we describe

below, we use R to denote the entire input, and ‖R‖ to

denote the cardinality (number of tuples) of the input.

When the algorithm needs two inputs, such as the join

algorithms, we use R and S to refer to each input, and

we assume that ‖R‖ ≤ ‖S‖. In the description of each

join algorithm that follows, we focus on equi-joins: an

output tuple is produced only if the join key in R is equal

to the join key in S.

2.1 Partitioning

The partitioning operation takes as inputs a table R and a

partitioning function p(·), such that p(r) is an integer in
[1,P] for all tuples r ∈ R. R is partitioned on the join key

if the partitioning function p(·) ensures that if two tuples
r1,r2 ∈ R have equal join keys, then p(r1) = p(r2). The
output of the partitioning operation is P partitions of R.

We use Ri, where i∈ [1,P], to refer to the partition whose
tuples satisfy the property p(r) = i, for r ∈ R.

Partitioning plays a key role in intra-operator paral-

lelism in various settings, since once the input is parti-

tioned, different worker threads can operate on differ-

ent partitions [10, 12, 28] in parallel. The partitioning



algorithm described here is the parallel radix partition-

ing described by Kim et al. [22], which is in turn based

on the original radix partitioning algorithm by Boncz et

al. [7]. The main idea behind this parallel partitioning al-

gorithm is that one can eliminate expensive latch-based

synchronization during repartitioning, if all the threads

know how many tuples will be stored in each partition

in advance.

This partitioning algorithmworks as follows. Let T be

the number of threads that participate in the repartition-

ing. The algorithm starts by having each thread i, where

i ∈ [1,T ], construct an empty histogram Hi with P bins.

We use Hi(t) to refer to bin t of the histogram Hi, where

t ∈ [1,P]. Every thread then reads a tuple r from the in-

put table R, increments the count for the bin Hi

(

p(r)
)

,

and stores the tuple r in a (NUMA) local buffer1. This

process continues until all the tuples in R have been pro-

cessed. Now the size of the output partition Rt , where t ∈
[1,P], can be computed as ∑iHi(t). In addition, thread i

can write its output at location Li(t) = ∑k∈[1,i)Hk(t) in-
side this partition Rt , without interfering with any other

thread. Finally, the actual repartitioning step takes place,

and thread i reads each tuple r from its buffer, computes

the output partition number p(r), and writes r to the out-
put location Li

(

p(r)
)

in the output partition Rp(r). The

local buffer can be deallocated once each thread has fin-

ished processing the R tuples.

2.2 In-place sorting

Work on sorting algorithms can be traced back to the

earliest days of computing, and textbooks on data struc-

tures, databases and algorithms commonly have a chap-

ter dedicated to sorting. Graefe has written a survey [19]

of sorting techniques used by commercial DBMSs, and

fast parallel sort algorithms for main memory DBMSs

are an active research area [22, 29].

We originally experimented with a sort-merge algo-

rithm that implements a bitonic merge network using

SIMD instructions to exploit data-level parallelism [22].

(We show results from this algorithm in Section 4.4 for

the dataset where all tuples are eight bytes wide.) We ul-

timately decided to use introspective sort [25], which is

a popular in-place sorting algorithm, for three reasons.

First, many highly-optimized sorting algorithms make

strong assumptions about the physical placement of the

data and the width of the tuple (for example, only eight

bytes in [22]). The second reason is that introspection

sort has been used in recently published results [2]. Us-

ing the same algorithm promotes uniformity with prior

work. Finally, introspection sort is implemented in many

1In general, it is faster to buffer the input locally than it is to re-

evaluate the subquery that produces it. The buffering step can be elim-

inated in the special case where the input is in a materialized table.

widely-used and heavily optimized libraries, like the

C++ standard template library. Our findings are there-

fore less likely to be affected by suboptimal configura-

tion settings or poorly optimized code.

2.3 Hash join

The algorithm described here is the main-memory hash

join proposed in [6], adapted to ensure that the hash ta-

ble is striped across the local memory of all threads that

participate in the join [4]. But, exactly as the original al-

gorithm, it is otherwise oblivious to any NUMA effects.

The algorithm has a build phase and a probe phase.

At the start of the build phase, all the threads allocate

memory locally. The union of these memory fragments

constitutes a single hash table that is shared by all the

threads, where logically adjacent hash buckets are phys-

ically located in different NUMA nodes. Thread i then

reads a tuple r ∈ R and hashes on the join key of r us-

ing a pre-defined hash function h(·). It then acquires a

latch on bucket h(r), copies r in this bucket, and releases
the latch. The memory writes required for this operation

may either target local or remote NUMA memory. The

build phase is completed when all the R tuples have been

stored in the hash table.

During the probe phase, each thread reads a tuple

s ∈ S, and hashes on the join key of s using the same

function h(·). For each rh(s) tuple in the hash bucket h(s),
the join keys of rh(s) and s are compared and the tuples

are joined together, if the join keys match. These mem-

ory reads may either target local or remote memory de-

pending on the physical location of the hash bucket h(s).
Because the hash table is only read during the probe

phase, there is no need to acquire latches. When all the S

tuples have been processed, the probe phase is complete

and the memory holding the hash table can be reclaimed.

If the R tuples processed by a thread are pre-sorted or

pre-partitioned on the join key, neither property will be

reflected in the output. However, if the S tuples that are

processed by a thread are pre-sorted or pre-partitioned

on any S key, the tuples produced by this thread will also

be sorted or partitioned on the same key.

2.4 Streaming merge join (STRSM)

This algorithm is a parallel version of the standard merge

join algorithm [11]. It is assumed that both R and S are

already partitioned on the join key with some partition-

ing function that has produced as many partitions as the

number of threads that participate in the join. If T is the

number of threads, we use Ri to refer to the partition of R

that will be processed by thread i ∈ [1,T ], and similarly

we use Si to denote the partition of S that will be pro-

cessed by the same thread i. Furthermore, this algorithm



requires that both Ri and Si are already sorted on the join

key.

Each thread i reads the first tuple r from Ri and the

first tuple s from Si. If the r tuple has a smaller join key

value than the s tuple, then the r tuple is discarded and

the next tuple from Ri is read. Otherwise, if the r tuple

has a larger join key value than the s tuple, the s tuple is

discarded and the next Si tuple is read. If the join keys

of r and s are equal, then the algorithm will buffer all Ri

and Si tuples whose join key is equal, produce the join

output, and then discard these temporary buffers. This

process is repeated until either Ri or Si are depleted. The

output of each thread is sorted and partitioned on the join

key.

2.5 Range-partitioned MPSM merge join

This algorithm is the merge phase of the range-

partitioned P-MPSM algorithm [2]. The algorithm re-

quires R to be partitioned in T partitions on the join key.

We keep the notation introduced in Section 2.4, and use

Ri to refer to the partition of R that will be processed

by thread i, where i ∈ [1,T ]. The algorithm requires that

each Ri partition has already been sorted on the join key.

Each thread i first allocates a private buffer Bi in

NUMA-local memory, and starts copying tuples from

S into Bi. (Bi is not a partition of S as two tuples with

the same key might be processed by different threads,

and thus be stored in different buffers.) When S is de-

pleted, each thread i sorts its Bi buffer in-place, using

the algorithm described in Section 2.2. Let B
j
i be the re-

gion in the Bi buffer that corresponds to the tuples that

join with tuples in partition R j. Thread i then computes

the offsets of every B
j
i region in the Bi buffer, for each

j ∈ [1,T ]. Because Bi is sorted on the join key, one can

compute the partition boundary offsets efficiently using

either interpolation or binary search. Once all the threads

have computed these offsets, thread i proceeds to merge

Ri and Bi
1 using the streaming merge join algorithm de-

scribed in Section 2.4. Thread i continues with merging

Ri with Bi
2, then Ri with Bi

3, and so on, until Ri has been

fully merged with Bi
T . The memory for the Bi buffer can

only be reclaimed by the memory manager after all the

threads have completed.

The output of theMPSM join is partitioned on the join

key with the same partitioning function as R per thread.

If S is range-partitioned on the join key, even with a dif-

ferent partitioning function than that for R, each thread

i can produce output that is sorted on the join key by

processing each Bi
j fragment in order.

2.6 Parallel merge join (PARSM)

This algorithm is a variation of the MPSM join algo-

rithm described above. Instead of scanning the R input

T times, this algorithm scans R once and performs a

merge of T + 1 inputs on the fly. Compared to the origi-

nal MPSMmerge join algorithm, this variant reduces the

volume of memory traffic and always produces output

sorted on the join key, at the cost of a non-sequential ac-

cess pattern when reading S tuples. As before, the algo-

rithm assumes R has already been partitioned on the join

key in T partitions, and that each partition Ri is sorted

on the join key.

Each thread i that participates in the parallel merge

join algorithm starts by reading and storing tuples from S

in the private buffer Bi. Then, thread i sorts Bi on the join

key, and the B
j
i regions are computed exactly as in the

MPSM algorithm. The difference in the parallel merge

join algorithm lies in how thread i merges all the Bi
j re-

gions with Ri. The originalMPSM algorithm performsT

passes, and then merges two inputs at a time. In the par-

allel merge join algorithm, thread imerges all Bi
j buffers

with the Ri partition in one pass, where j ∈ [1,T ]. This is
a parallel merge between T inputs for the S side, and one

input for the R side, which results in T + 1 input tuples

being candidates for merging at any given time.

The output of the parallel merge join is partitioned

on the join key per thread, with the same partitioning

function as R, and each thread’s output is always sorted

on the join key.

2.7 Analysis

We now analyze how each algorithm fares with respect

to two factors: (1) memory traffic and access pattern, and

(2) working memory footprint. We summarize the anal-

ysis in Table 1. Paying attention to the first factor, mem-

ory accesses, is important because the CPU may stall

while waiting for a particular datum to arrive. Such stalls

have been shown to have a significant impact on perfor-

mance [1]. With modern CPUs packing more than eight

cores per die, the available memory bandwidth per hard-

ware thread has been shrinking and access to memory

is becoming relatively more expensive than in the past.

The second factor, working memory size, is important

because memory is a precious storage medium, and us-

ing it judiciously can allow a database service to admit

more concurrent queries and achieve higher throughput.

The partitioning algorithm first scans R twice, once

from the input and once from each thread’s local buffer,

for a total of 2×‖R‖ memory read operations and ‖R‖
memory write operations. These reads and writes are se-

quential and to the local NUMA memory, making this

phase extremely efficient. Producing the output parti-



Number of memory accesses Peak

Sequential Random memory

Algorithm Input Reads Writes Reads Writes footprint

Partitioning R 2×‖R‖ ‖R‖ — ‖R‖ 2×‖R‖
In-place sort R — — Θ(‖R‖log‖R‖) Θ(‖R‖log‖R‖) ‖R‖
Hash join R,S ‖R‖+ ‖S‖ ‖R‖×‖S‖×σ ‖S‖ ‖R‖ ‖R‖

Streaming merge R,S ‖R‖+ ‖S‖ ‖R‖×‖S‖×σ — — Θ(1)
MPSM merge R,S ‖R‖×T+ ‖S‖ ‖R‖×‖S‖×σ — — ‖R‖+ ‖S‖
Parallel merge R,S ‖R‖ ‖R‖×‖S‖×σ ‖S‖ — ‖S‖

Table 1: Number of memory accesses and peak memory footprint (in tuples) for each algorithm described in Section 2. ‖R‖ is the

cardinality of R, the number of worker threads is denoted by T , and σ is the join selectivity.

tions requires ‖R‖ additional memory writes, assuming

the partitioning is completed in one pass. This is a more

costly operation as the writes may target remote NUMA

memory. The partitioning algorithm needs to maintain

an input and an output buffer, a total of 2×‖R‖ tuples.

Once the repartitioning is completed, the input buffer

can be deallocated, bringing the total space requirement

down to ‖R‖ tuples.

Moving to the in-place sorting algorithm, we find that

sorting is an expensive operation with respect to mem-

ory traffic, as the introspective sort algorithm reads and

writes Θ(‖R‖log‖R‖) tuples in the average case. The

memory access pattern is random, but all operations are

performed in a buffer that is local to each processing

thread, so all memory operations target local NUMA

memory.

The hash join algorithm exhibits a memory access pat-

tern that is hard to predict, and represents a demanding

workload for the memory subsystem. Building a hash ta-

ble requires writing ‖R‖ tuples at the locations pointed

to by the hash function. A good hash function would

pick any bucket with the same probability for each dis-

tinct join key, causing writes that are randomly scat-

tered across different hash buckets. Similarly, probing

the hash table causes ‖S‖ reads, and these reads are ran-
domly distributed across all the hash buckets, causing

remote memory reads from other NUMA nodes. Each

probe lookup reads the entire chain of tuples associated

with a hash bucket, but, in the absence of skew, the chain

length is low in correctly-sized hash tables [16]. Over-

all, the hash join algorithm performs ‖R‖ writes and

‖S‖ reads with a random memory access pattern, poten-

tially to remote NUMA nodes. When it comes to mem-

ory footprint, the hash join algorithm needs to buffer all

the tuples in the build table R. In addition, the memory

needed to store bucket metadata can be significant, and

can even be greater than the size of R if the size of each

R tuple is small.

The streaming merge join algorithm (STRSM) is ex-

tremely efficient. When it comes to memory operations,

the algorithm reads the two inputs once and produces

results on-the-fly. Moreover, the read access pattern is

sequential within each Ri and Si input for each thread,

a pattern which is easily optimized with data prefetch-

ing by the hardware. Finally, the memory requirements

are also negligible: The memory manager needs to pro-

vide sufficient memory to each thread i to buffer the most

commonly occurring join key in either Ri or Si. Across

all the T threads, this can be as little space to hold one

tuple per thread, for a total of T tuples of buffer space,

or at most min(‖R‖,‖S‖) tuples of buffer space for the

degenerate case where the join is equivalent to the carte-

sian product.

The MPSM merge join algorithm can cause a lot of

memory traffic. The number of tuples that MPSM reads

grows linearly with the number of threads participating

in the join; this algorithm reads a total of ‖R‖×T +‖S‖
tuples, where T is the number of threads. The access

pattern of the MPSM algorithm is sequential and only

two inputs are merged at any given time per thread. This

memory access pattern is highly amenable to hardware

prefetching. Regarding memory footprint, we find that

the MPSM join needs ‖R‖+ ‖S‖ tuples of space to per-

form well. At minimum, the MPSM join needs to store

the entire S input, so the memory capacity requirement

is at least ‖S‖ tuples. Although it is not necessary for

correctness, we have observed that buffering R signifi-

cantly improves performance: As the join is commonly

an operator that is closer to the root than the leaves of a

query tree, it is preferable to execute the subquery that

produces R once, buffer the output and reuse this buffer

T −1 times, than it is to execute the entire R subquery T

times.

The parallel merge join (PARSM) causes significantly

lower memory traffic compared to the MPSM join. The

biggest gain comes from reading the inputs once, so the

number of tuples that the parallel merge join reads re-

mains constant regardless of the number of threads par-

ticipating in the join. The memory access pattern, how-

ever, is very different, as T + 1 locations need to be in-



spected. As we will show in Section 4.2, keeping track of

T + 1 locations stresses the TLB, causing frequent page

walks which waste many cycles, and also makes hard-

ware prefetching less effective. When it comes to mem-

ory space, the parallel merge join algorithm only needs

sufficient memory to buffer the entire S input. Unlike the

MPSM algorithm, each Ri partition is scanned once by

each thread i so there is no performance benefit in buffer-

ing the R input.

3 Evaluation methodology

3.1 Hardware

The hardware we use for our evaluation is a Dell R810

server with four Intel Xeon E7-4850 CPUs clocked at

2GHz, running RedHat Enterprise Linux 6.0 with the

2.6.32-279 kernel. This is a system with four NUMA

nodes, one for each die, and 64 GB per NUMA node,

or 256 GB for the entire system. Each E7-4850 CPU

packs 10 cores (20 hyper-threads) that share a 24MB L3

cache, and have private 256KB L2 and 32KB L1 data

caches with 64-byte wide cache lines. The L1 data TLB

has 64 entries. Each socket is directly connected to every

other socket via a point-to-point QPI link, and a single

QPI link can transport up to 12.8 GB/sec in each direc-

tion. Finally, each socket has its own memory controller,

which has 4 DDR3 channels to memory for a total theo-

retical bandwidth of about 33.3 GB/sec per socket.

We refer to a number of performance counters when

presenting our experimental results in Section 4.2. We

have written our own utility to tap into the Uncore coun-

ters [21]. When we refer to memory reads, we count the

L3 cache lines filled as reported by the LLC S FILLS

event. When we refer to memory writes, we count

the L3 cache lines victimized in the M state, or the

LLC VICTIMS M event. We obtain the QPI utilization by

comparing the NULL IDLE flits sent across all QPI links

with the number of NULL IDLE flits sent when the sys-

tem is idle. We then report the utilization of the most

heavily utilized QPI link (ie. the link most likely to be a

bottleneck) averaged over the measurement interval. Fi-

nally, we obtain timings for the TLB page miss handler

by measuring the DTLB LOAD MISSES.WALK CYCLES

event.

3.2 Query engine prototype

We have implemented all algorithms described in Sec-

tion 2 in a query engine prototype written in C++. The

engine is parallel and NUMA-aware, and can execute

simple queries on main memory data. The engine ex-

pects queries in the form of a physical plan, which is

provided by the user in a text file. The plan carries all

the information necessary to compute the query result.

All operators in our query engine have a standard inter-

face consisting of start(), stop() and next() calls. This is

a pull-based model similar to the Volcano system [17].

We amortize the cost of function calls; each next() call

returns a 64KB array of tuples.

Our query engine prototype implements all the algo-

rithms described in Section 2. We base the hash join im-

plementation on the code written by Blanas et al. [6],

which is publicly available. Each hash bucket in our im-

plementation has 16 bytes of metadata, and these are

used for: (1) a latch, (2) a counter holding the number

of unused bytes in this hash bucket, and (3) an overflow

pointer to the next bucket, or NULL if there is no over-

flow. We have extended the original implementation to

be NUMA-aware by allocating the entire hash bucket i

from NUMA node i mod N, where N is the number of

NUMA nodes in the system. This means that tuples in

the same hash bucket always reside in the same NUMA

node, and reading hash buckets sequentially accesses all

NUMA nodes in a round-robin fashion. We size each

hash bucket so that two tuples can fit in a bucket before

there is an overflow. The number of hash buckets is al-

ways a power of two, and we size the hash table such

that the load factor is greater than one, but less than two.

The original code preallocated the first hash bucket, and

we do likewise.

The hash join algorithm needs to compute the hash

function for ‖R‖ tuples in the build phase, and ‖S‖ tuples
in the probe phase, for a total of ‖R‖+ ‖S‖ hash func-

tion evaluations. An ideal hash function has low com-

putational overhead and low probability of hash colli-

sions. Database management systems typically choose

the hash function dynamically based on the data type

and the domain of the key when the hash table is con-

structed. The number of cycles spent on computing the

hash value per tuple depends on the chosen hash func-

tion and the size of the join key. In general, this num-

ber ranges from one or two cycles for hash functions

based on bit masking and shifting, to hundreds of cy-

cles for hash functions that involve one multiplication

per byte of input, like FNV-1a [14]. For our experimen-

tal evaluation, if the hash table has 2b hash buckets, we

use the hash function h(x) = (x ∗ 2654435761)mod 2b.

This multiplicative hash function [23] performs onemul-

tiplication and one modulo operation per evaluation; it

is more expensive to evaluate than bit shifting, but much

cheaper than FNV-1a.

We implemented the MPSM merge join algorithm

from scratch based on the description of the P-MPSM

variant in [2], as the original implementation is not avail-

able.



Join output

Physical Physical Label Per-thread partitioned

property property in Query plan join output across

of S of R graph sorted? threads?

random

random

HASH Build hash table on R, Probe hash table with S, Sum No No

STRSM Partition R, Sort R, Partition S, Sort S, Streaming merge, Sum Yes Yes

MPSM Partition R, Sort R, Sort S, MPSM merge, Sum No Yes

PARSM Partition R, Sort R, Sort S, Parallel merge, Sum Yes Yes

sorted

HASH Build hash table on R, Probe hash table with S, Sum No No

STRSM Partition S, Sort S, Streaming merge, Sum Yes Yes

MPSM Sort S, MPSM merge, Sum No Yes

PARSM Sort S, Parallel merge, Sum Yes Yes

hash

HASH Probe hash table with S, Sum No No

STRSM Partition R, Sort R, Partition S, Sort S, Streaming merge, Sum Yes Yes

MPSM Partition R, Sort R, Sort S, MPSM merge, Sum No Yes

PARSM Partition R, Sort R, Sort S, Parallel merge, Sum Yes Yes

sorted

random

HASH Build hash table on R, Probe hash table with S, Sum Yes No

STRSM Partition R, Sort R, Streaming merge, Sum Yes Yes

MPSM Partition R, Sort R, MPSM merge, Sum Yes Yes

PARSM Partition R, Sort R, Parallel merge, Sum Yes Yes

sorted

HASH Build hash table on R, Probe hash table with S, Sum Yes No

STRSM Streaming merge, Sum Yes Yes

MPSM MPSM merge, Sum Yes Yes

PARSM Parallel merge, Sum Yes Yes

hash

HASH Probe hash table with S, Sum Yes No

STRSM Partition R, Sort R, Streaming merge, Sum Yes Yes

MPSM Partition R, Sort R, MPSM merge, Sum Yes Yes

PARSM Partition R, Sort R, Parallel merge, Sum Yes Yes

Table 2: List of query plans that we evaluate: “random” means tuples are in random order and not partitioned; “sorted” means

sorted on the join key and range-partitioned; “hash” means stored in a hash table and hashed on the join key.

3.3 Metrics

The two metrics we report are response time and mem-

ory footprint. Short query response times are, obvi-

ously, important for decision support queries. Mem-

ory footprint is also an important metric for two rea-

sons. The first is that query plans that use less mem-

ory allow for higher tenant consolidation in a cloud-

based database service. This permits the concurrent ex-

ecution of more queries, increasing the throughput per

node. Second, main memory is used as working mem-

ory for active queries, and also as storage for user data.

A main-memory database engine that selects plans that

use working memory frugally can keep a larger database

in memory, improving the overall utility of the system.

4 Experimental results

4.1 Workload

In our experimental evaluation we simulate the expen-

sive join operations that occur when executing ad-hoc

queries against a decision support database. Such a

database typically has many smaller dimension tables

that contain categorical information, such as customer or

product details, and a few large fact tables that capture

events of business interest, like the sale of a product.

To speed up query processing, a table might have al-

ready been pre-processed in some form, for example, all

tuples might have already been sorted on some particu-

lar key. We refer to such pre-processing as the physical

property of a table. We focus on three such properties:

1. Random, which corresponds to the case where no

pre-processing has been done and data is in random

order. Random input is processed by worker threads

in any order.

2. Sorted, which corresponds to the case where the in-

put is already sorted on the join key. Sorted input can

easily be partitioned among worker threads in dis-

tinct ranges, as the range partition boundaries can be

computed from existing statistics on the input.

3. Hash, which reflects the case where a table is stored

in a hash table, indexed on a particular key. This type

of pre-processing is common for dimension tables

that are small and are updated less frequently. Stor-

ing the large fact table in a hash table may be pro-



hibitive in terms of space overhead, and maintaining

the hash table is costly in the presence of updates.

We therefore only consider this physical property for

dimension tables.

4.2 Results from a uniform dataset with

narrow tuples

A common pattern in decision support queries is the

equi-join between a dimension table and a fact table, fol-

lowed by an aggregation. We use a synthetic dataset to

evaluate an ad-hoc equi-join between the dimension ta-

ble R, and the fact table S. The dimension table R con-

tains the primary key and the fact table S contains the

foreign key. R has 800×220 tuples and each tuple is six-

teen bytes wide. Each R tuple consists of an eight-byte

unique primary key in the range of
[

1,800× 220
]

, and

an eight-byte random integer. The fact table S has four

times as many tuples as R, namely 3200×220 tuples, and

each tuple is also sixteen bytes wide.2 The first eight-

byte attribute of an S tuple is the foreign key of R, and

the second eight-byte attribute is a random integer. The

cardinality of the output of the primary-key foreign-key

join is the cardinality of S, or 3200× 220 tuples. This

dataset does not have any skew, and every primary key

in R occurs in S exactly four times.

Assuming that the dimension table R has two integer

attributes R.a and R.b, and the fact table S has two

integer attributes S.c and S.d, for all the experiments

described here, we produce plans corresponding to the

following SQL query:

SELECT SUM(R.b + S.d)

FROM R, S

WHERE R.a = S.c

Depending on the physical properties of R and S, this

logical query may be translated into a number of phys-

ical execution plans. For our experimental evaluation,

we consider candidate plans that feature each join al-

gorithm presented in Section 2 for all combinations of

the physical properties of R and S. The query plan space

we explore is shown in Table 2. For all our experiments,

we execute each query in isolation, and use 80 worker

threads, which is the number of hardware contexts our

system supports.

As described in Section 3.3, we measure cost both in

terms of response time, and memory space. Figures 1

and 2 show the response time in seconds on the x-axis,

and the memory consumption in gigabytes (230 bytes)

2 We picked the one-to-four ratio to match the cardinality ra-

tios of a primary-key foreign-key join between tables Orders and

LineItem, or Part and PartSupp of the TPC-H decision support

benchmark.

In Figure 1(a) 1(b) 1(c) 2(a) 2(b) 2(c)

HASH
S in random order S in join key order

R rnd R ord R ht R rnd R ord R ht

Build HT on R 4.2 5.0 — 5.1 5.6 —

Probe HT with S 13.5 13.7 13.6 6.0 5.3 6.0

Query 18.8 18.8 13.9 11.1 11.1 6.1

STRSM
S in random order S in join key order

R rnd R ord R ht R rnd R ord R ht

Partition R 1.5 — 1.5 2.8 — 2.8

Sort R 7.2 — 7.2 7.3 — 7.3

Partition S 6.4 8.8 6.4 — — —

Sort S 36.3 36.7 36.3 — — —

Stream merge 5.9 2.0 5.9 1.8 1.9 1.8

Query 62.7 52.3 62.7 11.9 2.0 12.0

MPSM
S in random order S in join key order

R rnd R ord R ht R rnd R ord R ht

Partition R 3.4 — 3.4 2.7 — 2.7

Sort R 5.9 — 5.9 6.7 — 6.7

Sort S 29.2 29.1 29.2 — — —

MPSM merge 24.5 16.2 24.5 1.7 1.3 1.7

Query 69.1 51.2 69.1 16.2 7.5 16.2

PARSM
S in random order S in join key order

R rnd R ord R ht R rnd R ord R ht

Partition R 3.1 — 3.1 2.7 — 2.7

Sort R 5.8 — 5.8 6.7 — 6.7

Sort S 28.9 29.0 28.9 — — —

Parallel merge 35.6 28.2 35.6 4.8 4.4 4.8

Query 81.3 63.4 81.3 19.5 10.6 19.5

Table 3: Time breakdown per operator for the uniform dataset.

“R rnd” means that R is in random order, “R ord” means that

R is sorted in join key order, and “R ht” means that R is in a

hash table on the join key. “Query” reflects the query response

time as shown in Figures 1 and 2, and is not the sum due to

synchronization and buffering overheads that are not reflected

above.

on the y-axis. We use “HASH” for the hash-based plan,

and the “SM” suffix for the three sort-based query plans:

“STRSM” for the plan with the streaming merge join

operator, “MPSM” for the plan containing the MPSM

merge join operator, and “PARSM” for the plan with the

parallel merge join operator. Table 2 shows the actual

operators for each plan, and Table 3 breaks down time

per operator.

4.2.1 S in random order

We start with the case where the larger fact table S con-

tains tuples with keys in random join key order. This re-

quires each algorithm to pay the full cost of transform-

ing the input S to have the physical property necessary to

compute the join, like being sorted or partitioned on the

join key. In Figure 1 we plot the response time and the

memory consumption of each plan, for all three physical
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(c) R is in hash table on join key

Figure 1: Response time (in seconds) and memory consumption (in GB) when S is in random order, uniform dataset.

properties of R we explore: random, sorted, and hash.

We describe each in turn.

R in random order

We start with the general case where both the R and

S tables contain tuples with join keys in random order.

The response time and memory demand for all the four

query plans is shown in Figure 1(a), and a breakdown

per operator is shown in Table 3, column 1(a).

The hash join query plan computes the query result

in 18.8 seconds, the fastest among the all four query

plans. The hash join query plan also uses the least space,

needing 24.2 GB of scratch memory space, nearly all of

which (99%) is used to store the hash table. The majority

of the time is spent in the probe phase, which does about

1.90 memory reads per S tuple. Because the S tuples are

processed in random join key order, these reads are ran-

domly scattered across the shared hash table. This ran-

dom memory access pattern causes a significant number

of TLB misses, with 10% of the probe time, or 1.31 sec-

onds, being spent on handling page misses on memory

loads. As the hash table is striped across all the NUMA

nodes, the cross-socket traffic is the highest among all

the query plans: we have observed an average QPI uti-

lization of 34%, which means that remote memory ac-

cess requests might get queued at the QPI links during

bursts of higher memory activity.

The streaming sort-merge plan (STRSM) needs 62.7

seconds and 113 GB of memory to produce the out-

put, and the majority of the memory space (100 GB)

is needed to partition the S table. The majority of the

time is spent in sorting the larger S table. Repartition-

ing and sorting both R and S causes significant memory

traffic: 4.92 memory reads and 3.72 memory writes are

performed, on average, per processed tuple.

The MPSM sort-merge join query plan takes 69.1 sec-

onds and 62.7 GB of space to run. Compared to the

streaming sort-merge query plan, MPSM is only 10%

slower, and, because the MPSM merge-join algorithm

avoids repartitioning the larger S table, it needs about

half the space. The MPSM merge join algorithm per-

forms T scans of R during the merge phase (see Sec-

tion 2.5), which means reading an additional 0.96 TB,

for this particular dataset. This causes 4.32 memory

reads per S tuple, during the merge phase, which ac-

counts for 35% of the total time.

The parallel sort-merge query plan (PARSM) is iden-

tical to the MPSM sort-merge join query plan, described

above, for the partitioning and sort phases. During the

merge phase, however, the parallel merge join algorithm

does not partition S and does not scan R multiple times.

This cuts the memory traffic significantly, resulting in

only 0.38 memory reads per S tuple for the merge phase.

Merging from 81 (T + 1) locations in parallel, however,

overflows the 64-entry TLB (see Section 2.6 for a de-

scription of the algorithm). We observed that page miss

handling on memory load accounts for at least 37% of

the merge time (13.2 seconds). The high TLB miss rate

causes the merge phase to take 11 more seconds than

the MPSM merge phase, which brings the end-to-end

response time to a total of 81.3 seconds, making the par-

allel merge-join plan the slowest of the four alternatives.

Overall, when R and S are processed in random order,

the hash join query plan produces results 3.34× faster

and uses 2.59× less memory than the best sort-merge

based query plan, despite the many random accesses to

remote NUMA nodes that result in increased QPI traffic.

R in ascending join key order

We now consider the case where the smaller dimen-



0 20 40 60 80 100 120

Response time (sec)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(a) R is in random order

0 20 40 60 80 100 120

Response time (sec)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(b) R is sorted in ascending join key order
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(c) R is in hash table on join key

Figure 2: Response time (in seconds) and memory consumption (in GB) when S is sorted in ascending join key order, uniform

dataset.

sion table R is sorted, and the larger table S is in random

order. We plot the response time and memory demand

for the four query plans in Figure 1(b), and a breakdown

per operator is shown in Table 3, column 1(b).

The response time and memory consumption of the

hash-join query plan are 18.8 seconds and 24.2 GB re-

spectively. Comparing with the case where R is in ran-

dom order, Figure 1(a), we see that performance is not

affected by whether the build side R is sorted or not.

Also, the number of memory operations and the QPI link

utilization are the same as when processing R with tu-

ples in random physical order. This happens because the

hash function we use, described in Section 3.2, scatters

the sorted R input among distant buckets. This results

in memory accesses that are not amenable to hardware

caching or prefetching, exactly as when processing R in

random order.

Moving to the stream-merge join query plan

(STRSM), we find that it completes the join in 52.3 sec-

onds and has a memory footprint of about 100 GB, with

nearly all of this space being used for repartitioning S.

There is no need to repartition and sort R, as it is already

in join key order. Repartitioning and sorting S causes

5.25 memory reads and 3.82 memory writes, on average,

per S tuple.

TheMPSMmerge join query plan has a response time

of 51.2 seconds and needs 62.7 GB of memory. Sorting S

takes the majority of the time, and then the merge phase

performs T scans of the pre-sorted, pre-partitioned side

R to produce the result.

The parallel merge join query (PARSM) takes 63.4

seconds to produce the join output and needs 50.2 GB

of memory space, nearly all of which is needed to buffer

and sort S. The merge phase, however, takes 75% more

time than the MPSM merge phase primarily due to the

page miss handling overhead associated with keeping

track of T + 1 locations in parallel.

In summary, when R is sorted on the join key and the

tuples of S are in random physical order, the hash join

query plan has 2.72× lower response time and 2.07×
smaller memory footprint compared to all other sort-

merge based queries.

R in hash table, on join key

We now move to the case where R is stored in a hash

table created on the join key, and the S tuples are in ran-

dom order. We plot the results in Figure 1(c). We ob-

serve that the three sort-based queries have similar re-

sponse time and memory consumption as when the R

tuples are in random order (cf. Figure 1(a)). Due to the

pre-allocated space in the hashtable buckets, no pointer

chasing is needed to read the first bucket of each hash

chain, allowing for sequential reading across all NUMA

nodes. R is partitioned in buckets based on hash value, so

all sort-based plans first repartition R to create range par-

titions. These partitions subsequently need to be sorted,

before being processed by each merge-join algorithm.

Overall, these steps result in the same data movement

operations as when R is in random order.

The hash join plan can take advantage of the fact that

R is already in a hash table on the join key, as one can

now skip the build phase. This reduces the response time

of the query to 13.9 seconds, which is 4.51× faster than

the fastest sort-based query. As there is no hash table to

allocate, populate and discard, the hash join algorithm

now becomes a streaming algorithm, needing a fixed

amount of memory regardless of the input size. In our

prototype, the total space needed was 0.01 GB for hold-

ing output buffers, metadata and input state.



4.2.2 S in ascending join key order

We now consider the case when the S table is sorted in

ascending join key order. In this case, we also assume

that S is partitioned, as each thread i can discover the

boundaries of the Si partition by performing interpola-

tion or binary search in the sorted table S. In the results

that follow, we have discounted the cost of computing

the partition boundaries in this fashion. We plot the re-

sponse time and the memory consumption of each query,

for all three physical properties of R we explore. These

results are shown in Figure 2.

R in random order

First we consider the case when the larger table S is

sorted on the join key, but the smaller table R is not.

We plot the results in Figure 2(a), and a breakdown per

operator is shown in Table 3, column 2(a).

The hash join query computes the result in 11.1 sec-

onds and needs 24.2 GB of memory space. If we com-

pare with the case where S is in random order, in Fig-

ure 1(a), we see a 1.70× improvement in response time,

if S is sorted on the join key. This happens because now

that S is sorted, the four S tuples that match a given R

tuple occur in sequence. This allows the R tuple to be

read only once and then stay in the local cache, reducing

the total number of memory operations. Looking at the

performance counters, we find that 0.36 memory reads

occur per S tuple, which is 5.31× less than the number

of memory operations that happen when S is randomly

ordered. Probing the hash table with a sorted S input also

results in fewer cycles spent on TLB miss handling (0.6

seconds, or 10% of the probe time, a 2.22× improve-

ment), as well as lower QPI link utilization during the

probe phase (14.6% utilization on average, a 2.35× im-

provement) when compared with processing a randomly

ordered S table.

The streaming sort-merge join plan (STRSM) has a

response time of 11.9 seconds and a memory footprint

of 25.2 GB, and sorting R takes the majority of the time.

Repartitioning and sorting R is an expensive operation in

terms of memory traffic: it takes 5.02 memory reads and

3.31 memory writes per R tuple.

In this experiment, both the MPSM and the PARSM

query plans represent degenerate cases where each

thread i pays the full overhead of tracking and merging

T partitions of S with its Ri partition. However, because

S is prepartitioned, T − 1 partitions are empty and the

merge is a two-input streaming merge, as described in

the previous paragaph. We include the data points here

for completeness, and to demonstrate what the response

time and memory consumption would be in this setting.

The MPSM plan finishes in 16.2 seconds, which is 36%

slower than the STRSM plan. TheMPSM plan uses 62.7

GB of memory, 50 GB of which is used for buffering S.

The PARSM plan is similar in all phases except the final

merge join phase, which it completes in 4.77 seconds,

bringing the total time to 19.5 seconds.

To summarize, when looking at response time, we find

that both the hash join and streaming merge join plans

perform comparably as they return results in 11-12 sec-

onds, and both need about 25 GB of memory; both out-

perform the other two plans.

R in ascending join key order

This is the case where both R and S are presorted on

the join key. The results for this experiment are shown in

Figure 2(b), and a breakdown per operator is shown in

Table 3, column 2(b). The hash join plan has a response

time of 11.1 seconds, and uses 24.2 GB to store the hash

table for R. The hash join plan cannot take advantage of

the sorted R side and needs to construct a hash table on

R. Join keys appear sequentially in S, and this translates

into less memory traffic when probing the hash table due

to caching. The streaming merge join plan (STRSM) is

the fastest, as it only needs to scan the pre-sorted and

pre-partitioned inputs in parallel to produce the join out-

put. The response time of the STRSM plan is 1.98 sec-

onds, and because of its streaming nature the memory

size is fixed, regardless of the input size. We measured

memory consumption to be 0.01 GB, primarily for out-

put buffer space. As before, the MPSM and the PARSM

plans are degenerate two-way streammerge join queries.

Overall, when both R and S are sorted on the join key,

the preferred join plan is the streaming merge join which

needs minimal memory space and is 5.60× faster than

the hash join.

R in hash table, on join key

Finally, we consider the case where R is stored in a

hash table, on the join key, and S is sorted in ascending

join key order. We plot the response time and memory

demand of each query plan in Figure 2(c), and a break-

down per operator is shown in Table 3, column 2(c).

The hash join plan omits the build phase, as R is al-

ready in the hash table, and proceeds directly to the

probe phase. The hash join plan completes the query in

6.1 seconds, and needs only 0.01 GB of space for storing

metadata, the input state and the output buffers of each

thread. None of the sort-based plans can take advantage

of the hash-partitioned R. As a consequence, the first

step in all plans is to repartition R and produce range par-

titions. The streaming merge join plan (STRSM) takes

12.0 seconds, and needs 25 GB for the repartitioning,

and the remaining two sort-based plans are degenerate

cases of the streaming merge join query.

To summarize, if R is already stored in a hash table,



1 2 3 4 5 6

Compare to 1(a) 1(b) 1(c) 2(a) 2(b) 2(c)

S in random order S in join key order

Query plan R rnd R ord R ht R rnd R ord R ht

HASH 12.72 12.77 7.63 9.27 9.29 4.19

STRSM 84.72 66.13 84.72 15.64 5.45 15.64

MPSM 75.84 51.39 75.84 19.70 11.05 19.70

PARSM 84.82 61.08 84.82 23.00 13.98 23.00

Table 4: Response time (in seconds) for the skewed dataset.

“R rnd” means that R is in random order, “R ord” means that R

is sorted in join key order, and “R ht” means that R is in a hash

table on the join key. The query plan with the fastest response

time is highlighted in bold.

and S is sorted on the join key, the preferred join strat-

egy is the hash join, because it can take advantage of

the physical property of R without additional operations.

The hash join query in this case is nearly 2× faster in

response time and only uses minimal memory.

4.3 Effect of data skew

Many real workloads exhibit data skew. As a conse-

quence, data processing systems are rarely able to dis-

tribute data as uniformly as in the experiments of the

previous section. In this section, we show how response

time and memory consumption is affected by the pres-

ence of data skew.

We generated a new skewed dataset where the foreign

keys in S are generated based on the Zipf distribution

with parameter s = 1.05. In this skewed dataset, the top

1000 keys from R appear in nearly half (48%) the tu-

ples of S. All other parameters of the skewed dataset are

the same as for the uniform dataset (described in Sec-

tion 4.2). The query plans we experiment with are iden-

tical to the ones used in Section 4.2, and are described in

Table 2.

The memory consumption of all query plans was not

meaningfully influenced by data skew, because the two

datasets are of equal size and the relational operators

in our implementation dynamically allocate memory as

needed. Although the aggregate memory demand does

not change with skew, the memory needs of individual

threads differ and depend on the size of the partitions

they are assigned to.

Data skew, however, has a significant effect on the

query response time of certain query plans. Table 4

shows the response time for each query (in seconds). For

each physical property of R of interest, we report the re-

sponse time of all query plans in columns 1–3 when S

is in random order, and in columns 4–6 when S is pre-

sorted on the join key. We highlight the query plan with

the fastest response time in bold.

Starting from the hash join query plan, we see that the

response time of the hash join query plans actually im-

proves with skew, akin to what has been observed for

the single-socket case [6]. Comparing with the uniform

dataset, we find that response time improves with skew

for all hash-based query plans. The improvement ranges

from 1.2× (columns 4–5) to 1.8× (column 3). Break-

ing this down further by operation, we see that the build

phase is nearly unchanged, and all the response time

gains come from the probe phase. This improvement is

because of CPU caching, as now the most popular items

are accessed frequently enough to remain cached. This

significantly reduces the number of memory operations

needed to complete the hash join: For example, for the

case where both R and S tuples are in random physi-

cal order (column 1), the number of memory reads is

now 0.68 per S tuple, a 2.8× improvement from the 1.90

memory reads per S tuple for the uniform dataset (shown

in Figure 1(a)).

Turning our attention to the sort-merge based query

plans, we find that they are all negatively impacted

by data skew. The MPSM and parallel merge plans

(PARSM) are more resilient, but the streaming merge

plan (STRSM) is affected to a larger degree. For in-

stance, when both R and S are in random physical order

(column 1), the response time of the STRSM query plan

is 84.7 seconds, which is 1.35× slower than the 62.7 sec-

onds with the uniform dataset (shown in Figure 1(a)).

The culprit here is the partitioning step that all sort-

merge based query plans rely on. Data skew results in

skewed partition sizes, and as partitions are assigned to

specific threads, this results in a skewed work distribu-

tion. Although this effect can be ameliorated by smart

partition boundary selection [2, 12] and work stealing, it

cannot be eliminated: When a popular data item is in a

single partition by itself, it cannot be further subdivided

into smaller partitions. In our 80-thread system, some

partition will be imbalanced if any key occurs more fre-

quently than 1
80

= 1.25% of the time. As the number

of threads in a system increases, the probability of hav-

ing an imbalanced work distribution for a given skewed

dataset increases.

To summarize, the hash join is the preferred query

plan when there is data skew in a primary key-foreign

key join for two reasons. First, frequent accesses to

the hottest items of the hash table effectively “pin”

them in the cache, significantly reducing memory traf-

fic. This improves the query response time as skew in-

creases. Second, the hash join algorithm results in a bal-

anced work distribution for all threads during the probe

phase, regardless of the skew in S and the number of

threads. Partitioning-based algorithms, in comparison,

cannot guarantee a uniform work distribution, and their

response time increases with higher skew when a few

threads must handle disproportionate amount of work.



4.4 Impact of tuple size

The datasets we have experimented with so far have tu-

ples that are only sixteen bytes wide. While such small

tuple sizes are common in data warehousing environ-

ments that store data in a column-oriented fashion, tu-

ples may be substantially larger in other settings.

We generate five different datasets to explore how

different tuple sizes affect the equi-join query response

time. Across all five datasets, we fix the size of the di-

mension table R to be 10GB, and the fact table S to be

40GB, and we only vary the tuple size. Tuples in both

the dimension table R and the fact table S have N integer

attributes, which are r1, r2, . . . , rN, and s1, s2, . . . ,

sN, respectively. The join key is always fixed to eight

bytes, and we experiment with tuples as thin as eight

bytes (N=1) and as wide as 128 bytes (N=16). Larger

tuple sizes, such as 128 bytes, capture the case when tu-

ples are stored in a row-oriented fashion, as is the case

when data is retrieved from a transaction processing en-

gine. A tuple size of eight bytes enables additional per-

formance optimizations by cleverly using SIMD regis-

ters to form a bitonic merge network for sort-merge join

[22]. All datasets are uniform, and every primary key in

R always occurs in S exactly four times.

For the experiments in this section, we produce plans

corresponding to the following SQL query:

SELECT SUM(R.r1 + R.r2 + · · · + R.rN

+ S.s1 + S.s2 + · · · + S.sN)

FROM R, S

WHERE R.r1 = S.s1

We only present the case were both the R and S inputs

are in random order, and we plot the results in Figure 3.

Each tick on the horizontal axis corresponds to a dataset

with a different tuple width. The vertical axis shows the

response time, in seconds, of each join query. The query

plans that are produced for this query consist of the same

operators as the query plans discussed in Section 4.2 and

described in Table 2. For the dataset where the tuple

width is 8 bytes, all sort-based query plans use an im-

plementation of the SIMD-optimized bitonic sort-merge

join algorithm that is described by Kim et al. [22].

We find that the response time for all query plans

drops as tuples get wider, but the hash-based query plan

retains its advantage across all tuple sizes. The perfor-

mance gain is primarily due to reduced memory activity

that results from better spatial locality. Intuitively, as tu-

ples get wider, the hash join query plan based processes

more bytes per hash table lookup, and the sort-based

plans process more bytes per tuple copy when sorting

in-place. This spatial locality benefit is especially pro-

nounced for the hash join plan: 16.0 billion memory op-

erations take place when the dataset consists of eight-
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Figure 3: Response time (in seconds) as dataset size remains

fixed and tuple size varies between 8 and 128 bytes. S and R

are in random order. When the tuple size is 8 bytes, all sort-

based plans (“SM” suffix) use the SIMD-optimized bitonic

sort-merge join algorithm by Kim et al. [22] for sorting.

byte tuples, compared with only 2.9 billion memory op-

erations when the same hash join query plan is executed

on 128-byte wide tuples.

To summarize, regardless of the size of the input tu-

ples, when R and S are in random join key order, the hash

join plan has the fastest response time. The sort-based

query plans cannot close the performance gap even when

using a SIMD-optimized bitonic sort-merge sorting al-

gorithm [22] that is designed for eight-byte tuples.

4.5 Summary of our findings

The hash join is the best join strategy when tuples in

the fact table S are randomly ordered. In this case, the

hash join outperforms all other algorithms both in terms

of response time, and memory consumption. For the uni-

form dataset, the hash-based join plans have from 2.72×
to 4.57× lower response time compared to their fastest

sort-based counterpart, while using at least 2.07× less

memory. The response time margin widens even further,

in favor of the hash join, when the larger table S has data

skew, as the popular items get cached and memory traf-

fic is reduced. The hash join remains the preferred join

algorithm for tuples as wide as 128 bytes.

The sort-based algorithms only have competitive re-

sponse times when the larger table S is presorted on the

join key. This improves the performance of the hash join

as well, albeit to a smaller degree.When both R and S are

pre-sorted on the join key, the streaming merge join plan

(STRSM) has the lowest response time and the smallest

memory footprint.



5 Related work

There has been a lot of work on analyzing and com-

paring the performance of sort-based and hash-based

join methods, especially in the context of traditional

databases, e.g. [11, 18]. As the hardware landscape

evolved, join algorithms became more sophisticated to

better take advantage of caching in uniprocessors. Radix

join [7, 24] is a cache-friendly join algorithm that per-

forms multiple passes over the data until they can fit in

the cache. Chen et al. [9] optimize hash joins by inspect-

ing the data to choose the most efficient cache-friendly

algorithm for the probe phase [8].

With the advent of multi-core CPUs, there was a re-

newed interest in parallel join algorithms. Kim et al. [22]

compare a parallel sort-merge join with a parallel radix

join. Their study relies on an analytical model and raises

interesting issues about the impact of SIMD register

lengths on the relative performance of the sort-merge

join versus the hash-join in the future. As the SIMD

registers have doubled in size with the introduction of

the AVX extension, revisiting the use of SIMD for join

processing is a promising direction that complements

our work. Blanas et al. [6] argue for a hash join algo-

rithm that does no partitioning in a single-socket setting.

Balkesen et al. [4] demonstrate that hardware-conscious

implementations of the non-partitioned and radix parti-

tioned join algorithms can greatly improve performance.

Albutiu et al. [2] introduce a NUMA-aware sort-merge

algorithm that is designed for a modern multi-socket

server and they show that it outperforms the hash join

that was proposed in [6].

These has also been work that looks at query execu-

tion more broadly. Graefe introduced the widely-used

pull-based model for encapsulating parallelism in the

Volcano system [17]. More recently, Harizopoulos et

al. [20] explore how one can exploit sharing opportu-

nities among multiple queries in the context of a disk-

based system. Arumugam et al. [3] experiment with the

DataPath engine, which is built around a push-based

model. Giannikis et al. [15] created the SharedDB sys-

tem and demonstrate that sharing opportunities can be

exploited for performance in non-OLAP workloads that

also do updates. Finally, Neumann [26] leverages the

LLVM infrastructure to compile entire queries into a

single highly optimized operator to improve the perfor-

mance of a main-memory engine.

6 Conclusions and future work

In this paper we have shown that it is too early to write

off the hash join algorithm for main memory equi-join

processing. We have carefully characterized the impact

of various input physical properties on the simple hash-

based join and three flavors of sort-based equi-join al-

gorithms, and shown that the hash-based join algorithm

often answers queries faster than the current state-of-the-

art sort-based algorithms.We also characterize the mem-

ory footprint that is required to run each join algorithm.

When neither input is sorted, we find that the memory

footprint of the hash join algorithm is smaller than that

of the sort-based algorithms, as the hash join algorithm

needs to buffer only one of the two join inputs. Overall,

our results find that there is a place for both hash-based

and sort-based algorithms in a high performance main-

memory data processing engine.

One promising direction for future work is expand-

ing this study to more complex queries with multiple

joins. Database management systems traditionally opti-

mize multi-join queries by identifying query plans that

maintain “interesting orders” during query execution.

An interesting order, for example, is an operator se-

quence that keeps the input sorted or partitioned on a

particular key. The optimizer then estimates the disk ac-

cess cost of all query plans and picks the best plan for

execution. Whether such an optimization process pro-

duces efficient query plans for memory-resident input is

an open question. Other interesting directions for future

work include considering non-equality joins, and further

investigating methods to improve the basic join algo-

rithms.
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Özsu. Main-memory hash joins on multi-core

CPUs: Tuning to the underlying hardware. In

ICDE, 2013.

[5] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho,

N. Hrle, S. Idreos, M.-S. Kim, O. Koeth, J.-G. Lee,

T. T. Li, G. M. Lohman, K. Morfonios, R. Müller,

K. Murthy, I. Pandis, L. Qiao, V. Raman, R. Sidle,

K. Stolze, and S. Szabo. Business analytics in (a)

blink. IEEE Data Eng. Bull., 35(1):9–14, 2012.

[6] S. Blanas, Y. Li, and J. M. Patel. Design and eval-

uation of main memory hash join algorithms for

multi-core CPUs. In SIGMOD, pages 37–48, 2011.

[7] P. A. Boncz, S. Manegold, and M. L. Kersten.

Database architecture optimized for the new bot-

tleneck: Memory access. In VLDB, pages 54–65,

1999.

[8] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C.

Mowry. Inspector joins. In VLDB, pages 817–828,

2005.

[9] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C.

Mowry. Improving hash join performance through

prefetching. ACM Trans. Database Syst., 32(3):17,

2007.

[10] J. Cieslewicz and K. A. Ross. Data partitioning

on chip multiprocessors. In DaMoN, pages 25–34,

2008.

[11] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,

M. Stonebraker, and D. A. Wood. Implementation

techniques for main memory database systems. In

SIGMOD, pages 1–8, 1984.

[12] D. J. DeWitt, J. F. Naughton, and D. A. Schnei-

der. Parallel sorting on a shared-nothing architec-

ture using probabilistic splitting. In PDIS, pages

280–291, 1991.

[13] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd,
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