
iWatcher: Simple and General Architectural Support for Software Debugging

Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou and Josep Torrellas
PROBE Group, Department of Computer Science, University ofIllinois at Urbana-Champaign

http://carmen.cs.uiuc.edu/probe

1. Motivation

Recent impressive advances in microprocessor performance
have failed to deliver significant gains in ease of software debug-
ging. This is a major shortcoming of the state of the art, given that
software bugs have major implications on computer system relia-
bility and programmer time. Specifically, software bugs account
for as much as 40% of computer system failures [10] and cost the
U.S. economy $59.5 billion annually, or 0.6% of the GDP [11]!

Code debugging is currently largely done using software tech-
niques. One approach is to perform checks statically [2, 4, 5, 18].
Most static tools require significant involvement of the program-
mer to write specifications or annotate programs. In addition, most
static tools are limited by aliasing problems and other compile-time
limitations, especially for C/C++ programs. As a result, many bugs
often remain in the software even after aggressive static checking.

A second approach is to monitor execution dynamically. Ex-
amples of dynamic monitors include Purify [7], Valgrind [15], the
Intel thread checker [9], DIDUCE [6], Eraser [14], CCured [3, 12],
and other tools [1]. The strength of this approach is that theanal-
ysis is based on actual execution paths and accurate values of vari-
ables and aliasing information. However, most dynamic checkers
suffer from two limitations. First, they are often computationally
expensive. Some dynamic checkers slow down a program by 6-30
times [6, 14], which makes such tools undesirable for production
runs. Moreover, some timing-sensitive bugs may never occurwith
these slowdowns. Second, most dynamic checkers rely on compil-
ers or pre-processing tools to insert instrumentation and,therefore,
are limited by imperfect variable disambiguation. Consequently,
some accesses to a monitored location may be missed by the in-
strumentation tool. Because of this reason, some bugs are caught
much later than when they actually occur, which makes it hardto
find the root cause of the bug. The following C code gives a simple
example.

int x, *p;
/* assume invariant: x == 1 */

...
p = foo(); /* a bug: p points to x incorrectly */
p = 5; / line A: unintended corruption of x */
...
InvariantCheck(x == 1); /* line B */
z = Array[x];
...

While x is corrupted in line A, the bug is not detected until the
invariant check at line B. Due to the difficulty of performingperfect
pointer disambiguation, it may be hard for a dynamic checkerto
know that it needs to insert an invariant check right after line A.

While there is interest in providing micro-architectural support
for software debugging, the current state of the art is very primitive.

Such state of the art is largely limited to watchpoints [8, 16] and
event or branch trace buffers [8, 17]. Watchpoints, such as those
supported by Intel’s x86 [8] and Sun’s SPARC [16], trigger anex-
ception every time that a programmer-specified memory location is
accessed. While they are a good starting point, they have several
limitations. First, they do not providelow-overheadchecks that
can be onall the timein a production run. This is because they trig-
ger the exception mechanism, which has very high overhead and
disrupts the execution of the application. Second, currentarchi-
tectures only support a handful of watchpoints (four in Intel x86).
Besides watchpoints, branch or event trace buffers [8, 17] can also
potentially be used for debugging purposes, such as providing more
program state information in a crash. However, they do not provide
highly-processed information that could truly boost debuggability.

Recently, there have been some research proposals for micro-
architectural support for software debugging [13, 19]. These pro-
posals are promising. However, they provide relatively limited bug
coverage and are also relatively expensive. Specifically, ReEn-
act uses the state buffering, rollback and re-execution features of
Thread Level Speculation (TLS) to debug data races [13]. The
Flight Data Recorder extends the cache coherence protocol to
record the ordering of shared-memory accesses for postmortem
analysis [19].

In contrast, our paper presents new architectural support that is
able todetect a large varietyof software bugs with onlymodest
hardware changesto current microprocessor implementations.

2. Our Contribution

We propose theIntelligent Watcher (iWatcher)— architectural
support to automatically monitor dynamic execution for awide va-
riety of software bugs with minimal overhead andmodest hard-
ware requirements. With iWatcher, programmer-specified moni-
toring functions are associated to monitored memory locations or
objects. When any such “watched” location is accessed, the moni-
toring function is automatically triggered in hardware with very low
overhead, without generating an exception. iWatcher is very flex-
ible because monitoring functions are not hard-wired into the ar-
chitecture, but are provided by programmers or external automated
software tools.

The main characteristics that distinguish iWatcher are:

— It monitorsall accesses to the watched memory locations. Con-
sequently, it catches hard-to-find bugs such as updates through
aliased pointers and stack-smashing attacks commonly exploited by
viruses. It is very effective for bugs such as buffer overflow, mem-
ory leaks, uninitialized reads, or accesses to freed locations.

1

Feature Software-Only Hardware iWatcher
Dynamic Checkers Watchpoints

Checking all monitored Very hard to ensure due to Yes Yes
locations and only those? aliasing & incomplete info
Language independent, cross- Typically no Yes Yes
module, and cross-developer?
Overheads Variable High: checks are Low

Typically high interrupt driven
Flexibility High Currently low: only High

a few watchpoints

Table 1. Comparing different approaches. Examples of software-only dynamic checkers include assertions and automated checkers such
as DIDUCE [6].

— It has low overhead because it only monitorstrueaccesses to the
watched memory locations and uses minimal-overhead hardware-
supported triggering of monitoring functions.

— It is flexible in that it supports any checks coded by the pro-
grammer. It is also language independent, cross-module andcross-
developer.

— It canoptionally leverage TLS to hide monitoring overhead and
provide rollback support. Specifically, with TLS, a monitoring
function is executed in parallel with the rest of the program, and
the program can be rolled back if a bug is found.

Table 1 compares iWatcher to other approaches.

3. iWatcher Overview
3.1. iWatcher Interface

Programs can turn on and off the monitoring of a memory object
with the iWatcherOnand iWatcherOff system calls, respectively.
These calls can be inserted into programs by the compiler, instru-
mentation tools, or the programmer. The interfaces of iWatcherOn
and iWatcherOff are:

iWatcherOn(MemAddr, Length, WatchFlag, ReactMode,
MonitorFunc, Param1, Param2, ... ParamN)

iWatcherOff(MemAddr, Length, WatchFlag, MonitorFunc)

When iWatcherOn is called, it associates monitoring function
MonitorFunc()to the memory object that begins atMemAddrand
has sizeLength. MonitorFunc() takes argumentsParam1, Param2,
... ParamN. TheWatchFlagspecifies what types of accesses (read,
write, or both) to this memory object will trigger MonitorFunc().
ReactModedetermines the action that will be taken at run time if
the monitoring function detects a bug (Section 3.2.4).

After iWatcherOff is called, MonitorFunc() is no longer invoked
when the object is accessed with WatchFlag.

In general, a program can associate multiple monitoring func-
tions to the same object. In this case, upon an access to the watched
object, all its monitoring functions are executed. Monitoring func-
tions can be individually removed.

3.2. iWatcher Implementation

iWatcher is implemented using a combination of hardware and
software. Logically, it has four parts. (1) To detect accesses to
monitored locations (“triggering” accesses), we use two structures:
WatchFlags in the tags of both L1 and L2 cache lines to detect
accesses to small monitored memory regions, and a smallRange
Watch Table (RWT)to detect accesses to large monitored memory
regions; (2) The processor provides a specialMain checkfunction

Figure 1. iWatcher hardware architecture.

register to store the common entry point for all monitoring func-
tions; (3) Software manages the associations between watched lo-
cations and monitoring functions; and (4) TLS can beoptionally
used to hide monitoring overhead by executing a monitoring func-
tion in parallel with the rest of the program, and to add ease of use
by supporting program rollback if a bug is found.

Figure 1 overviews the iWatcher hardware. There are two
WatchFlag bits per word in the line: a read-monitoring one
and a write-monitoring one. If the read (write)-monitoringbit
is set for a word, all loads (stores) to this word are trigger-
ing. The Maincheckfunction register holds the address of the
Main checkfunction(), which is the common entry point to all
program-specified monitoring functions. iWatcher also hasa Vic-
tim WatchFlag Table (VWT), which stores the WatchFlags for lines
of small watched regions that have at some point been displaced
from L2.

The RWT is a set of registers to detect accesses to large (multi-
page) monitored memory regions. Each RWT entry stores the vir-
tual start and end addresses of the region plus WatchFlag bits. The
RWT is used to prevent lines from large monitored regions from
overflowing the L2 cache and the VWT. The WatchFlags of these
lines do not need to be set in the caches.

A software table calledCheck Tablestores detailed monitoring
information for each watched memory location. The information
stored includes MemAddr, Length, WatchFlags, ReactMode, Mon-
itorFunc, and Parameters. An iWatcherOn/Off() call adds/removes
an entry to/from the Check Table.

2

When a triggering access occurs, the hardware saves the archi-
tectural registers and the program counter, then sets the program
counter to the address in the Maincheckfunction register. The
Main checkfunction() searches the Check Table and calls the mon-
itoring function(s) associated with the accessed location.

Finally, the processor core is enhanced with aTrigger bit for
each reorder buffer (ROB) entry, and 2 WatchFlag bits for each
load-store queue entry (Section 3.2.2).

3.2.1. Watching a Range of Addresses

When a program calls iWatcherOn() for a memory region as
large as or larger thanLargeRegion, iWatcher allocates a RWT en-
try. If the RWT already has an entry for this region, iWatcherOn()
updates the entry’s WatchFlags. If, instead, the region is smaller
thanLargeRegion, iWatcher loads the watched memory lines into
L2 (but not into L1 to avoid polluting it). As a line is loaded from
memory, iWatcher accesses the VWT to read-in the old Watch-
Flags, if they exist there. Then, it sets the WatchFlag bits of the
L2 line to be the logical OR of the old and new values. In all cases,
iWatcherOn() also adds the monitoring function to the CheckTable.

3.2.2. Detecting Triggering Accesses

A triggering access can be identified at two points: early in the
pipeline when the RWT is checked in parallel with the TLB lookup,
or later in the pipeline when the memory system is accessed and the
WatchFlags in the cache are checked.

A load can access the memory system before reaching the head
of the ROB. As a load reads the data from the cache into the load
queue, it also reads the WatchFlag bits into the load queue entry
(unless they have already been read from a RWT entry). If the
WatchFlag bits indicate that the load is a triggering one, the Trigger
bit in the load’s ROB entry is set. When any instruction reaches the
head of the ROB and its Trigger bit is set, the hardware triggers the
corresponding monitoring function.

Typically, a store is not sent to the memory system until it
reaches the head of the ROB. At that point, it is retired immediately,
but it may still cause a cache miss. In iWatcher, this means that the
processor may have to wait a long time to know whether the store
is a triggering access. During that time, no subsequent instruction
could be retired, as the processor may have to trigger a monitoring
function. To reduce this delay, we change the micro-architecture so
that, as soon as a store address is resolved early in the pipeline, a
prefetch is issued to the memory system. Such prefetch readsthe
data into the cache, brings the WatchFlag bits into the storequeue
entry, and may set the Trigger bit in the ROB entry. With this sup-
port, the processor is much less likely to have to wait when the store
reaches the head of the ROB. More details are in [20].

3.2.3. Executing Monitoring Functions

When a triggering load or store is retired, the architectural regis-
ters and the program counter are automatically saved, and execution
is redirected to the address in the Maincheckfunction register. Af-
ter the monitoring function completes, execution resumes from the
saved program counter.

As anoptimization, we can leverage TLS mechanisms. Specifi-
cally, when the triggering access is retired, a new microthread could
be automatically spawned to speculatively execute the restof the

program in parallel with the microthread that executes the monitor-
ing function non-speculatively. Data dependencies between moni-
toring function and rest of the program would be tracked by TLS,
and any violation would result in the rollback of the speculative
microthread.

With or without TLS, a monitoring function is triggered in hard-
ware. iWatcher can skip the OS because monitoring functionsare
not related to any resource management in the system and, in addi-
tion, arenotexecuted in privileged mode. Moreover, they are in the
same address space as the monitored program. Therefore, a “bad”
program cannot use iWatcher to mess up other programs.

3.2.4. Different Reaction Modes

If the monitoring function detects a bug, different actionstake
place depending onReactMode(Section 3.1).ReactModecan be
ReportMode, BreakMode, andRollbackMode(the last one requires
checkpointing and rollback support).

In ReportMode, the monitoring function reports the outcome of
the check and lets the program continue. This mode is used for
profiling and error reporting without interfering with the execution
of the program.

In BreakMode, the program pauses at the state right after the
triggering access, and control passes to an exception handler. Users
can attach an interactive debugger, which can be used to find more
information.

Finally, in RollbackMode, the program rolls back to the most
recent checkpoint, typically much earlier than the triggering access.
This mode can be used to support the replay of a code section to
analyze a bug, or to support transaction-based programming.

4. Key Results

We simulate a desktop with a 4-context SMT and iWatcher hard-
ware. We compare its functionality and overhead to Valgrind[15],
a well-known software-only dynamic checker. Valgrind is anopen-
source memory debugger for x86 programs. We use 7 applications
that contain various real or induced bugs, including bufferoverflow,
memory leak, accessing freed locations, stack smashing, and invari-
ant violations. Relative to [20], we add 5 new applications with real
bugs.

Table 2 compares Valgrind and iWatcher in ReportModewithout
TLS. For each of the buggy applications considered, the table shows
whether the schemes detect the bug and, if so, the overhead they add
to the program’s execution time.

iWatcher detects all the bugs considered, whereas Valgrindcan
detect only a fraction of the bugs. For bugs that can be detected by
both iWatcher and Valgrind, iWatcher adds only 4-179% overhead,
a factor of 17-165 times smaller than Valgrind. More detailsand
many other experiments are in [20].

5. Conclusions

iWatcher is a significant advance in the state of the art of micro-
architecture for software debugging. First, it targets a wide variety
of memory-related bugs, such as memory leaks, accesses to freed
locations, buffer overflow, stack smashing, and memory corruption.
These bugs are hard to debug because their effect is typically ob-
served much later than when they occur; with iWatcher, they are
detected immediately. Secondly, iWatcher offers high flexibility

3

Application Valgrind iWatcher Without TLS
Bug Overhead Bug Overhead

Detected? (%) Detected? (%)

gzip-STACK No - Yes 80.0
gzip-FREE Yes 1466 Yes 8.9
gzip-BO1 Yes 1514 Yes 10.4
gzip-ML Yes 936 Yes 53.5

gzip-COMBO Yes 1650 Yes 61.5
gzip-BO2 No - Yes 10.6
gzip-IV1 No - Yes 10.5
gzip-IV2 No - Yes 9.7

cachelib No - Yes 4.4
bc-1.06 Yes 7367 Yes 178.8

ncompress-4.2.4 No - Yes 3.1
gzip-1.2.4 No - Yes 169.4

polymorph-0.4.0 No - Yes 0.1
tar-1.13.25 Yes 132 Yes 3.6

Table 2. Comparing Valgrind and iWatcher. The iWatcher over-
heads with TLS are presented in our ISCA-2004 paper [20]. The
applications in bold are new relative to our ISCA-2004 paper [20].

to the programmer, who can write very sophisticated monitoring
functions. Thirdly, iWatcher is highly usable, as it is language in-
dependent, cross-module and cross-developer. Fourthly, it is very
effective — it is able to detect many real bugs, and with program
slowdowns that are a factor of 17-165 times smaller than a popular
dynamic monitoring tool. Finally, iWatcher provides a framework
for general-purpose debugging, including performance debugging
through value and address profiling.

References
[1] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of all pointer and

array access errors. InPLDI, June 1994.

[2] J.-D. Choi et al. Efficient and precise datarace detection for multithreaded object-
oriented programs. InPLDI, June 2002.

[3] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer. CCured in the
real world. InPLDI, June 2003.

[4] D. Engler and K. Ashcraft. RacerX: Effective, static detection of race conditions
and deadlocks. InSOSP, October 2003.

[5] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for building
system-specific, static analyses. InPLDI, June 2002.

[6] S. Hangal and M. S. Lam. Tracking down software bugs usingautomatic
anomaly detection. InInternational Conference on Software Engineering, May
2002.

[7] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access
errors. InUsenix Winter Technical Conference, January 1992.

[8] Intel Corporation. The IA-32 Intel architecture software developer’s manual,
volume 3: System programming guild, 2004.

[9] KAI-Intel Corporation. Intel thread checker. URL:
http://developer.intel.com/software/products/threading/tcwin.

[10] E. Marcus and H. Stern. Blueprints for high availability. John Willey and Sons,
2000.

[11] National Institute of Standards and Technlogy (NIST),Department of Com-
merce. Software errors cost U.S. economy $59.5 billion annually. NIST News
Release 2002-10, June 2002.

[12] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of
legacy code. InPOPL, January 2002.

[13] M. Prvulovic and J. Torrellas. ReEnact: Using thread-level speculation mecha-
nisms to debug data races in multithreaded codes. InISCA, June 2003.

[14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
dynamic data race detector for multithreaded programs.ACM Transactions on
Computer Systems, November 1997.

[15] J. Seward. Valgrind. URL: http://valgrind.kde.org/.
[16] SPARC International.The SPARC architecture manual: Version 8. Prentice-Hall,

1992.
[17] B. Sprunt. Pentium 4 performance-monitoring features. IEEE Micro, July-

August 2002.
[18] U. Stern and D. L. Dill. Automatic verification of the SCIcache coherence

protocol. InConference on Correct Hardware Design and Verification Methods,
October 1995.

[19] M. Xu, R. Bodik, and M. D. Hill. A “flight data recorder” for enabling full-
system multiprocessor deterministic replay. InISCA, June 2003.

[20] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher: Efficient Architec-
tural Support for Software Debugging. InProceedings of the 31st International
Symposium on Computer Architecture, June 2004.

4

