IWatcher: Simple and General Architectural Support for Software Debugging

Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou and Josep Tosella
PROBE Group, Department of Computer Science, Universitilinbis at Urbana-Champaign
http://carmen.cs.uiuc.edu/probe

1. Motivation Such state of the art is largely limited to watchpoints [8] 46d
event or branch trace buffers [8, 17]. Watchpoints, sucthaset
gﬁpported by Intel's x86 [8] and Sun’s SPARC [16], triggerexn
ception every time that a programmer-specified memory iocds

Recent impressive advances in microprocessor performan,
have failed to deliver significant gains in ease of softwagbud)-
g:;tg ;ZISI;IS 2 ?;lgrniggg:q:nm'Fga?;:geosntaégn(:f ﬂzra:'gg-,":itre accessed. While they are a good starting point, they haweralev

W U9 v jor impiicat pu Y limitations. First, they do not providlw-overheadchecks that

bility and programmer time. Specifically, software bugscact S - o -

. can be orall the timein a production run. This is because they trig-
for as much as 40% of computer system failures [10] and cest th er the excention mechanism. which has very hiah overhedd an
U.S. economy $59.5 billion annually, or 0.6% of the GDP [11]! g P ' y g

U . disrupts the execution of the application. Second, curaecii-
Code debugging is currently largely done using software-tec tectures only support a handful of watchpoints (four in IX&6)
nigues. One approach is to perform checks statically [2, 485 y Supp P)

. NI . Besides watchpoints, branch or event trace buffers [8, 4Jadso
Most static tools require significant involvement of the gmam- . - e

. e " potentially be used for debugging purposes, such as prayidore
mer to write specifications or annotate programs. In addlitioost . S .

. L o - program state information in a crash. However, they do notige
static tools are limited by aliasing problems and other citertime highlv-processed information that could trulv boost d it
limitations, especially for C/C++ programs. As a resulthmbaugs gnly-p y Yalglity. _
often remain in the software even after aggressive staticlihg. Recently, there have been some research proposals for-micro

A second approach is to monitor execution dynamically. Exarchitectural support for software debugging [13, 19]. Sehpro-
amples of dynamic monitors include Purify [7], Valgrind [1fhe ~ Posals are promising. However, they provide relativelyite bug
Intel thread checker [9], DIDUCE [6], Eraser [14], CCureql{2], coverage and are also relatively expensive. SpecificalgErR
and other tools [1]. The strength of this approach is thaethal- ~ act uses the state buffering, rollback and re-executiotufes of
ysis is based on actual execution paths and accurate vdluas-o Thread Level Speculation (TLS) to debug data races [13]. The
ables and aliasing information. However, most dynamic keec Flight Data Recorder extends the cache coherence protocol t
suffer from two limitations. First, they are often compigaglly ~ record the ordering of shared-memory accesses for postmort
expensive. Some dynamic checkers slow down a program by 6-80alysis [19].
times [6, 14], which makes such tools undesirable for prtdoc In contrast, our paper presents new architectural suppatis
runs. Moreover, some timing-sensitive bugs may never osdlr aple todetect a large varietpf software bugs with onlynodest

these slowdowns. Second, most dynamic checkers rely onitommardware change® current microprocessor implementations.
ers or pre-processing tools to insert instrumentation tetefore,

are limited by imperfect variable disambiguation. Consstly, 2

some accesses to a monitored location may be missed by the in-
strumentation tool. Because of this reason, some bugs aghta
much later than when they actually occur, which makes it hard

find the root cause of the bug. The following C code gives a E@mp
example.

Our Contribution

We propose théntelligent Watcher (iWatcher— architectural
support to automatically monitor dynamic execution favide va-
riety of software bugs with minimal overhead antbdest hard-
ware requirements With iWatcher, programmer-specified moni-
int x, *p;)) toring functions are associated to monitored memory looatior

f* assume invariant: x == 1 */ objects. When any such “watched” location is accessed, thg-m
toring function is automatically triggered in hardwarelwiery low

p =foo(); /* a bug: p points to x incorrectly */

p = 5; / line A unintended corruption of x */ Overhead, without generating an exception. iWatcher ig flex-
L. ible because monitoring functions are not hard-wired il ar-
I'nvariant Check(x == 1); /* line B */ chitecture, but are provided by programmers or externarated

z = Array[x]; software tools.

. . . .) The main characteristics that distinguish iWatcher are:
While z is corrupted in line A, the bug is not detected until the

invariant check at line B. Due to the difficulty of performipgrfect — It monitorsall accesses to the watched memory locations. Con-
pointer disambiguation, it may be hard for a dynamic ched¢&er sequently, it catches hard-to-find bugs such as updatesghro
know that it needs to insert an invariant check right aftee IA. aliased pointers and stack-smashing attacks commonlgigsgby

While there is interest in providing micro-architecturapport viruses. It is very effective for bugs such as buffer overflovem-
for software debugging, the current state of the art is verpiive. ory leaks, uninitialized reads, or accesses to freed loasti

Feature Software-Only Hardware iWatcher
Dynamic Checkers Watchpoints
Checking all monitored Very hard to ensure due tg Yes Yes
locations and only those? aliasing & incomplete info
Language independent, crosg- Typically no Yes Yes
module, and cross-developerP
Overheads Variable High: checks are Low
Typically high interrupt driven
Flexibility High Currently low: only High
a few watchpoints

Table 1. Comparing different approaches. Examples of software-only dynamic checkers include assertions and automated checkers such
as DIDUCE [6].

— It has low overhead because it only monittitse accesses to the |5 Trigger Bitin ROB Extra HW for

watched memory locations and uses minimal-overhead haedwa CPU WatchFlags in LD/ST Queue O l“’f‘"Chef

supported triggering of monitoring functions. : Original HW
. . . . Main_check_functi

— It is flexible in that it supports any checks coded by the pro- am’cﬂfgcisfelrmc o

grammer. It is also language independent, cross-moduleraisg- Range Watch Table (RWT)

developer. Start | End | WatchFlag | Valid

— It canoptionallyleverage TLS to hide monitoring overhead and L1 cache

provide rollback support. Specifically, with TLS, a monitay 7

function is executed in parallel _W|th the_ rest of the programd WatchFlag: 2 bits/word

the program can be rolled back if a bug is found. Victim WatchFlag

Table 1 compares iWatcher to other approaches. Table (VWT)
Addr | WatchFlag

1 i

Programs can turn on and off the monitoring of a memory object Figure 1. iWatcher hardware architecture.
with the iWatcherOnand iWatcherOff system calls, respectively.
These calls can be inserted into programs by the compilstruin

men_tatlon tools, or the programmer. The interfaces of iertOn tions; (3) Software manages the associations between agtoh
and iWatcherOff are: cations and monitoring functions; and (4) TLS candmionally
i Vat cher On(MemAddr, Length, VatchFl ag, React Mode, used to hide monitoring overhead by executing a monitorimg

Moni tor Func, Paraml, Param, ... Param\) o in parallel with the rest of the program, and to add edsese
i Wat cher OF f (MenmAddr, Length, WatchFlag, MonitorFunc) bysupgorting program rollback ifa?bugg s fyound

When iWatcherOn is called, it associates monitoring fuorcti
MonitorFunc()to the memory object that begins ldemAddrand
has sizd_ength MonitorFunc() takes argumen®araml, Param2
... ParamN The WatchFlagspecifies what types of accesses (rea
write, or both) to this memory object will trigger MonitorRa().
ReactModealetermines the action that will be taken at run time if
the monitoring function detects a bug (Section 3.2.4).

After iWatcherOff is called, MonitorFunc() is no longer wked
when the object is accessed with WatchFlag.

In general, a program can associate multiple monitoring-fun
tions to the same object. In this case, upon an access to thbeda

3. iWatcher Overview ' L2cache
3.1. iWatcher Interface

register to store the common entry point for all monitoringd-

Figure 1 overviews the iWatcher hardware. There are two
WatchFlag bits per word in the line: a read-monitoring one
dand a write-monitoring one. If the read (write)-monitoribg
is set for a word, all loads (stores) to this word are trigger-
ing. The Maincheckfunction register holds the address of the
Main_checkfunction() which is the common entry point to all
program-specified monitoring functions. iWatcher also &&sc-
tim WatchFlag Table (VWThich stores the WatchFlags for lines
of small watched regions that have at some point been displac
from L2.

object, all its monitoring functions are executed. Moriitgrfunc- The RWT is a set of registers to detect accesses to largei{mult

tions can be individually removed. page) monitored memory regions. Each RWT entry stores the vi
tual start and end addresses of the region plus WatchFlagTiie

3.2. iWatcher Implementation RWT is used to prevent lines from large monitored regionsnfro

iWatcher is implemented using a combination of hardware an@Verflowing the L2 cache and the VWT. The WatchFlags of these

software. Logically, it has four parts. (1) To detect acessg IN€S do not need to be set in the caches.

monitored locations (“triggering” accesses), we use twacstires: A software table calle€Check Tablestores detailed monitoring
WatchFlags in the tags of both L1 and L2 cache lines to detegtformation for each watched memory location. The inforiorat

accesses to small monitored memory regions, and a $Raalfje stored includes MemAddr, Length, WatchFlags, ReactModen-M
Watch Table (RWTip detect accesses to large monitored memoritorFunc, and Parameters. An iWatcherOn/Off() call addabves

regions; (2) The processor provides a spellaln_checkfunction an entry to/from the Check Table.

When a triggering access occurs, the hardware saves thie arghrogram in parallel with the microthread that executes tbeitor-
tectural registers and the program counter, then sets thgrggn ing function non-speculatively. Data dependencies batweeni-
counter to the address in the Matheckfunction register. The toring function and rest of the program would be tracked bysTL
Main_checkfunction() searches the Check Table and calls the morand any violation would result in the rollback of the spetiuéa

itoring function(s) associated with the accessed location microthread.

Finally, the processor core is enhanced witfirager bit for With or without TLS, a monitoring function is triggered inrioa
each reorder buffer (ROB) entry, and 2 WatchFlag bits foheacware. iWatcher can skip the OS because monitoring functwes
load-store queue entry (Section 3.2.2). not related to any resource management in the system andin a

tion, arenotexecuted in privileged mode. Moreover, they are in the
3.2.1. Watching a Range of Addresses same address space as the monitored program. Thereforada “b

When a program calls iWatcherOn() for a memory region aBrogram cannot use iWatcher to mess up other programs.
large as or larger thatargeRegioniWatcher_ aIIoc_ates_a RWTen- 35 4 Different Reaction M odes
try. If the RWT already has an entry for this region, iWatcDie()
updates the entry’s WatchFlags. If, instead, the regiomialier If the monitoring function detects a bug, different acticdake
than LargeRegion iWatcher loads the watched memory lines intoPlace depending oReactModg(Section 3.1).ReactModecan be
L2 (but not into L1 to avoid polluting it). As a line is loaderbfn ReportModeBreakMode andRollbackMod€the last one requires
memory, iWatcher accesses the VWT to read-in the old Watctgheckpointing and rollback support).
Flags, if they exist there. Then, it sets the WatchFlag Hitthe In ReportModethe monitoring function reports the outcome of
L2 line to be the logical OR of the old and new values. In alesas the check and lets the program continue. This mode is used for

iWatcherOn() also adds the monitoring function to the Chkatile. ~ Profiling and error reporting without interfering with theezution
of the program.

3.2.2. Detecting Triggering Accesses In BreakMode the program pauses at the state right after the
triggering access, and control passes to an exceptiondraiiers
can attach an interactive debugger, which can be used to fimd m
information.

Finally, in RollbackMode the program rolls back to the most

A load can access the memory system before reaching the h re&ent checkpoint, typically much earlier than the trigggaccess.

of the ROB. As a load reads the data from the cache into the Io%1 nzyTg(;ebﬁgnot;etousSSSptgrtStl:grr:s:c:iZi-rt?g;ae)é gﬂgg?g:}enﬁnegnon 0

gueue, it also reads the WatchFlag bits into the load quetrg en ' '

(unless they_ ha_ve_already been rea_d from a RWT entry). If thg Key Results

WatchFlag bits indicate that the load is a triggering one,Tiigger

bit in the load’'s ROB entry is set. When any instruction resctihe We simulate a desktop with a 4-context SMT and iWatcher hard-

head of the ROB and its Trigger bit is set, the hardware trigee ~ ware. We compare its functionality and overhead to Valgfirt,

corresponding monitoring function. a well-known software-only dynamic checker. Valgrind isogoen-
Typically, a store is not sent to the memory system until isource memory debugger for x86 programs. We use 7 applisatio

reaches the head of the ROB. At that point, it is retired imiatety, ~ that contain various real or induced bugs, including busterflow,

but it may still cause a cache miss. In iWatcher, this meaaistiie memory leak, accessing freed locations, stack smashidgneari-

processor may have to wait a long time to know whether thestont violations. Relative to [20], we add 5 new applicatiorithweal

is a triggering access. During that time, no subsequentiction ~ bugs.

could be retired, as the processor may have to trigger a orargt Table 2 compares Valgrind and iWatcher in ReportMwiteout

function. To reduce this delay, we change the micro-archite so TLS For each of the buggy applications considered, the talosh

that, as soon as a store address is resolved early in théngipal Whether the schemes detect the bug and, if so, the overheyaddd

prefetch is issued to the memory system. Such prefetch taads to the program’s execution time.

data into the cache, brings the WatchFlag bits into the stoezie iWatcher detects all the bugs considered, whereas Valgand

entry, and may set the Trigger bit in the ROB entry. With thip-s detect only a fraction of the bugs. For bugs that can be cetdut

port, the processor is much less likely to have to wait wherstore ~ both iWatcher and Valgrind, iWatcher adds only 4-179% ogath

reaches the head of the ROB. More details are in [20]. a factor of 17-165 times smaller than Valgrind. More detaitsl

many other experiments are in [20].

A triggering access can be identified at two points: earhhi t
pipeline when the RWT is checked in parallel with the TLB lapk
or later in the pipeline when the memory system is accessiéthaen
WatchFlags in the cache are checked.

3.2.3. Executing Monitoring Functions

When a triggering load or store is retired, the archited¢tegis- 5. Conclusions

ters and the program counter are automatically saved, audigan iWatcher is a significant advance in the state of the art ofanic
is redirected to the address in the Maineck function register. Af- architecture for software debugging. First, it targets demariety
ter the monitoring function completes, execution resumasifthe of memory-related bugs, such as memory leaks, accessesetb fr
saved program counter. locations, buffer overflow, stack smashing, and memoryugiion.

As anoptimization we can leverage TLS mechanisms. Specifi-These bugs are hard to debug because their effect is typiutadl
cally, when the triggering access is retired, a new micestiticould served much later than when they occur; with iWatcher, threy a
be automatically spawned to speculatively execute theafefite detected immediately. Secondly, iWatcher offers high ity

Application Valgrind iWatcher Without TLS [2] J.-D. Choietal. Efficient and precise datarace detedto multithreaded object-
Bug Overhead Bug Overhead oriented programs. IRLDI, June 2002.
Detected? (%) Detected? (%) [3] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Wein@Cured in the
- real world. InPLDI, June 2003.
gzip-STACK No - Yes 80.0 [4] D.Engler and K. Ashcraft. RacerX: Effective, static eletion of race conditions
gzip-FREE Yes 1466 Yes 8.9 and deadlocks. I8OSR October 2003.
o~ [5] S.Hallem, B. Chelf, Y. Xie, and D. Engler. A system anddaage for building
gZIp BO1 Yes 1514 Yes 10.4 system-specific, static analyses.AhDI, June 2002.
gzip-ML Yes 936 Yes 53.5 [6] S. Hangal and M. S. Lam. Tracking down software bugs usingpmatic
gzip-COMBO Yes 1650 Yes 61.5 anomaly detection. linternational Conference on Software Engineerivay
: 2002.
gZIP—BOZ No - Yes 10.6 [7] R. Hastings and B. Joyce. Purify: Fast detection of mgnieaks and access
gzip-IV1 No - Yes 10.5 errors. InUsenix Winter Technical Conferencianuary 1992.
gzip-1v2 No - Yes 9.7 [8] Intel Corporation. The IA-32 Intel architecture softwadeveloper’s manual,
- volume 3: System programming guild, 2004.
cachelib No - Yes 4.4 [9] KAl-Intel Corporation. Intel thread checker. URL:
bc-1.06 Yes 7367 Yes 178.8 http://developer.intel.com/software/products/thirgdcwin.
ncompress-4.2.4 No N Yes 31 [10] E. Marcus and H. Stern. Blueprints for high availapilifohn Willey and Sons,
: — : 2000.
gzip-1.24 No - Yes 1694 [11] National Institute of Standards and Technlogy (NISDgpartment of Com-
polymor ph-0.4.0 No - Yes 0.1 merce. Software errors cost U.S. economy $59.5 billion alyuNIST News
- Release 2002-10, June 2002.
tar-113.25 Yes 132 Yes 3.6 [12] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-sefrofitting of
Table 2. Comparing Valgrind and iWatcher. The iWatcher over- 3] Il\ig??’cy CIOd_e- "FdOJPErJanHary ZROOEZ- - Using threadsl i o
. . . Prvulovic and J. Torrellas. ReEnact: Using threadel speculation mecha-
heads with TLS are presented in our ISCA-2004 paper [20]. The nisms to debug data races in multithreaded codetS@A June 2003.
applications in bold are new relative to our ISCA-2004 paper [20]. [14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, andriiehson. Eraser: A

dynamic data race detector for multithreaded prograAGM Transactions on
Computer Systemblovember 1997.

to the programmer, who can write very sophisticated moinigpr [15] J. Seward. Valgrind. URL: http://valgrind.kde.org/. ,)
[16] SPARC InternationalThe SPARC architecture manual: VersiarP8entice-Hall,

functions. Thirdly, iWatcher is highly usable, as it is lalage in- 1992.
dependent, cross-module and cross-developer. Fourth$yvery [17] B. Sprunt. Pentium 4 performance-monitoring featurdEEE Micro, July-
. o . August 2002.
effective — it is able to detect many real bUgS’ and with paagr [18] U. Stern and D. L. Dill. Automatic verification of the S@hche coherence
slowdowns that are a factor of 17-165 times smaller than ajlpop protocol. InConference on Correct Hardware Design and Verification Mdth
. L . . . October 1995.
dynamic monitoring tool. Finally, iWatcher provides a framork 19 w1 xu, R. Bodik, and M. D. Hill. A “flight data recorder’ foenabling full-
for general-purpose debugging, including performanceudging system multiprocessor deterministic replay!SCA June 2003.
through value and address profiling. [20] P.Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWagchEfficient Architec-
tural Support for Software Debugging. Rroceedings of the 31st International
Symposium on Computer Architectudene 2004.
References ymP P W

[1] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient deimtof all pointer and
array access errors. PLDI, June 1994,

