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Why direct LDA is not equivalent to LDA
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Abstract

In this paper, we present counterarguments against the direct LDA algorithm (D-LDA), which was previously claimed to be equivalent
to Linear Discriminant Analysis (LDA). We show from Bayesian decision theory that D-LDA is actually a special case of LDA by directly
taking the linear space of class means as the LDA solution. The pooled covariance estimate is completely ignored. Furthermore, we
demonstrate that D-LDA is not equivalent to traditional subspace-based LDA in dealing with the Small Sample Size problem. As a result,
D-LDA may impose a significant performance limitation in general applications.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, an algorithm called direct Linear Discriminant
Analysis (D-LDA) has received considerable interest in Pat-
tern Recognition and Computer Vision. It was first proposed
in Ref. [1] to deal with the small sample size (SSS) problem
in face recognition and has been followed with several ex-
tensions, e.g., fractional direct LDA [2], kernel based direct
LDA [3], and regularized direct discriminant analysis [4].

The key idea in this method is that the null space of the
between-class scatter matrix Sb contains no useful infor-
mation for recognition and is discarded by diagonalization.
The within-class scatter matrix Sw is then projected into the
linear subspace of Sb and factorized using eigenanalysis to
obtain the solution. It was claimed in Ref. [1] that

(1) D-LDA gives the “exact solution for Fisher’s criterion”.
(2) D-LDA is equivalent to subspace-based LDA (e.g.,

PCA + LDA) in dealing with the SSS problem.

However, we observe that these claims of D-LDA are
flawed in theory. Although the null components of Sb do not
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influence the projection of Sb in the feature space, they do
influence the projection of Sw and hence should not be dis-
carded. Since all “direct” approaches share the same idea
(e.g. Refs. [1–4]), we focus on the original work of D-LDA
[1] to simplify the discussion. Similar arguments can be
made to any of the extensions.

Our analysis originates from the viewpoint of Bayesian
decision theory. It is well-known [5] that Fisher’s LDA (ratio
of Sb and Sw in the projection space) is equivalent to a
classification problem of c Gaussians with equal covariance
when the model parameters are estimated in the maximum-
likelihood (ML) fashion. The solution requires a minimum
of c−1 linear features (assuming input dimension D?c) to
form a sufficient statistic. However in D-LDA, because the
null space of Sb is first discarded, its solution is constrained
to be in the linear space of Sb (no matter the form of Sw),
which is maximally c − 1 dimensional. Hence, the complete
c − 1 dimensional linear space of Sb must be kept as the
D-LDA solution in order for it to possibly be a sufficient
statistic. Due to the fact of ignoring Sw, D-LDA is a special
case of LDA.

We additionally point out one missing assumption in
the linear algebra derivation of D-LDA given in Ref.
[1]. When any singular matrix (Sb or Sw) is involved in
the generalized eigenvector and eigenvalue problem, the
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diagonalization should start from the non-singular matrix.
Since Sb has a maximal rank of c − 1 as a D × D matrix
(c>D), it is often singular by the nature of the problem. It
should not be diagonalized first. Although the SSS problem
further results in a singular or badly scaled Sw, it is due to
the lack of examples, which should be carefully handled and
not ignored (as in D-LDA). Lastly, we show that D-LDA is
not equivalent to subspace-based LDA (e.g., PCA + LDA)
in dealing with the SSS problem. The claim of D-LDA as a
“unified PCA + LDA” [1] is not valid.

In the remainder of this paper, we first review the the-
ory of LDA in Section 2. Then we describe the D-LDA al-
gorithm and prove it as a special case of LDA in Section
3. Experiments are presented in Section 4 with conclusions
given in Section 5.

2. Linear discriminant analysis

There are two different perspectives of LDA. One is
Fisher’s LDA, which is defined by maximizing the ratio
of the between-class and within-class scatter matrices (Sb

and Sw) in a linear feature space. The other comes from
Bayesian decision theory with LDA as a straightforward
application of c Gaussians with equal covariance.

2.1. Fisher’s LDA

Let Sb and Sw denote the between-class and within-class
scatter matrices

Sb =
c∑

i=1

P(�i )(�i − �)(�i − �)�, (1)

Sw =
c∑

i=1

P(�i )

⎡
⎣ 1

ni

∑
�∈�i

(� − �i )(� − �i )
�
⎤
⎦ , (2)

where �i denotes the ith class with ni examples and class
mean �i . P(�i ) denotes the prior probability of class �i .
Fisher’s LDA looks for a linear subspace W (c − 1 compo-
nents), within which the projections of the different classes
are best separated, as defined by maximizing the discrimi-
nant criteria

J (W) = |W�SbW |
|W�SwW | . (3)

Along with the orthonormal constraint of W , this can be
solved [6] as a generalized eigenvector and eigenvalue prob-
lem

Sbwi = �iSwwi (4)

with wi and �i being the ith generalized eigenvector and
eigenvalue of Sb with regard to Sw. The LDA solution W

contains all the c−1 eigenvectors with non-zero eigenvalues
(Sb has a maximal rank of c − 1). For a non-singular Sw,

it is equivalent to consider a classic eigenvector problem of
S−1

w Sb with

S−1
w Sbwi = �iwi . (5)

However, this requires at least the same number of examples
as input dimensions (N �D), which is seldom the case in
applications (the SSS problem). For a singular Sw, Fisher’s
LDA is under-constrained. Any non-trivial vector w in the
null space of Sw which yields distinct projections of the
class means perfectly maps the variance within each class
to 0 (inf Fisher ratio).

2.2. Bayesian decision theory

As a theoretical framework in statistical pattern recogni-
tion, Bayesian decision theory assumes the knowledge of
the ground-truth probability distributions of each class. The
analytical assumption of LDA is the case of c Gaussians
with equal covariance �. Let �i denote the mean of the ith
class. The optimal Bayesian classifier can be formulated as
the likelihood ratio test (LRT). The ith LRT (1� i�c − 1)

with regard to reference class �0 is

LRT0i (x) = P(x |�i )

P (x |�0)

= e(�i−�0)
T�−1x−(1/2)(�T

i �−1�i−�T
0 �−1�0)

i

≷
0

P(�0)

P (�i )
= �0i . (6)

An equivalent log-likelihood ratio test (LLRT) is

[�−1(�i − �0)]Tx
i

≷
0

log(�0i ) + 1
2 (�T

i �−1�i − �T
0 �−1�0).

(7)

Let vi = �−1(�i − �0). Eq. (7) can be interpreted as an
input vector x being first projected into a c − 1 dimensional
linear subspace (vi) followed by thresholding. The linear
space V = span(vi) is the Bayesian solution of LDA, which
contains all the linear transformations that are statistically
sufficient for optimal classification. When the ML estimates
of the Gaussian parameters (�̂i and �̂) are used, Sw = �̂ and
Sb is in the linear subspace span(�̂i − �̂0).

Fisher’s LDA is closely related to the LDA formulation in
Bayesian decision theory in that its solution eig(S−1

w Sb) is
one orthonormal basis of the linear subspace V̂ (the estimate
of the true Bayesian solution V ). It is not unique. Any full
rank linear transformation in V̂ yields the same Fisher ratio
defined in Eq. (3). In this sense, the correct LDA solution is
a linear subspace, an element in a Grassmann manifold (set
of subspaces).

With regard to the SSS problem, the ML estimate of the
common covariance �̂ (or Sw) is singular, whereas �̂−1 is re-
quired to describe a Gaussian distribution. There are two ap-
proaches to deal with this issue. One is to believe in the data
by assuming the estimate �̂ being the true � (components
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not existing in the current examples should never happen
in the future). This approach looks for solutions in the lin-
ear subspace of examples (subspace-based LDA). The other
method assumes the opposite in that the LDA solution may
contain null components (null-space-based LDA). However,
due to the lack of evidence from examples (any null com-
ponent maps �̂ to 0), this approach is under-constrained and
typically assumes an identity common covariance in the null
space.

3. Direct LDA (D-LDA)

Although D-LDA was previously claimed to be equivalent
to LDA [1], we show from Bayesian decision theory that
D-LDA is actually a special case of LDA. And with regard
to the SSS problem, we show that D-LDA is not equivalent
to subspace-based LDA (e.g., PCA + LDA).

3.1. Direct LDA algorithm

D-LDA is based on the idea of “simultaneous diagonaliz-
ation” of Sb and Sw, which is an alternative approach
in linear algebra [7] to solve the generalized eigenvec-
tor and eigenvalue problem (Eq. (4)). Unlike traditional
methods, which first diagonalize Sw, D-LDA first whitens
(diagonalizes and scales) Sb and then diagonalizes Sw

(see Algorithm 1). This was claimed in Ref. [1] to over-
come the SSS problem, which results in a singular Sw. We
now describe the limitations with the D-LDA algorithm.

Algorithm 1. D-LDA Algorithm

1: Diagonalize Sb by eigenanalysis.
Find matrix V such that V TSbV = �, where V TV = I

and � is diagonal. Only keep components with non-zero
eigenvalues (at most c − 1). Let Y be the new basis and
Db be the diagonal matrix of corresponding non-zero
eigenvalues. Y TSbY = Db.

2: Project and diagonalize Sw.
Let Z=YD

−1/2
b (whitening Sb). Factorize ZTSwZ using

eigenanalysis UT(ZTSwZ)U = Dw where UTU = I and
Dw is diagonal. Keep eigenvectors with smallest eigen-
values.

3: Reconstruct the matrix of feature vectors W =ZUD
−1/2
w .

For a given input vector x, its projection in the feature
space x∗ = WTx = D

−1/2
w UTZTx.

3.2. Issue 1: Theoretical deficiency

Consider the case of two Gaussians with class means �0
and �1. Let the common covariance � be full rank. The
Bayesian LDA solution is a single feature vector (Eq. (7))

v = �−1(�1 − �0). (8)

In general, this is not in the linear space of �1 − �0 due
to the presence of �. With ML estimates Sw = �̂ and
Sb = (�̂1 − �̂0)(�̂1 − �̂0)

T, Fisher’s LDA solution (from
Eq. (5)) is

w = eig(S−1
w Sb) = 	�̂−1(�̂1 − �̂0) (9)

with a scalar 	 as the vector normalization factor [6].
This is theoretically the same as the Bayesian solution
(Eq. (8)).

However, if the D-LDA algorithm is followed, the linear
subspace of Sb is simply span(�̂1 − �̂0). The projection of
Sw into this space therefore is a single number. The D-LDA
solution is

w = 
(�̂1 − �̂0) (10)

with 
 being a constant scalar. It is clearly not equivalent to
the LDA solution (Eqs. (8) and (9)).

Similar analysis can be extended to a c-class problem.
The linear space of Sb has at most c− 1 components, which
results in a (c − 1)× (c − 1) dimensional covariance matrix
ZTSwZ in Step 2 of Algorithm 1. Because each column
vector in W = ZUD−1/2 is linearly reconstructed from Z
(Step 3), the D-LDA solution is limited to be in the linear
subspace of Sb. However, from Bayesian decision theory,
a minimum of c − 1 feature vectors are required to form
a sufficient statistic. In order for the D-LDA solution to
possibly be a sufficient statistic, the entire linear subspace of
Sb must be kept as the D-LDA solution. In this sense, D-LDA
completely ignores the common covariance estimate �̂ (or
Sw) and purely depends on the class means for classification,
which is indeed a special case of LDA.

Lastly, in the linear algebra derivation given in Ref. [1],
a key assumption was missed when using the simultaneous
diagonalization method to solve the generalized eigenvector
problem. Only when Sb and Sw are both non-singular, the
solutions to eig(S−1

w Sb) (equivalent to diagonalizing Sw first)
and eig(S−1

b Sw) (equivalent to diagonalizing Sb first) share
the same eigenvectors, but reciprocal eigenvalues (compare
Eqs. (5) and (11))

S−1
b Swwi = 1

�i

wi . (11)

However, if any singular matrix is involved, diagonalization
in this method replaces the inverse matrix with the pseu-
doinverse, which results in different solutions for Eqs. (5)
and (11). To avoid the pseudoinverse, the diagonalization
should always start from the non-singular matrix. However,
for a c-class problem, the rank of Sb is at most c − 1,
which is not dependent on the sample size and is determined
by the nature of the problem to be often singular (D?c).
Hence the matrix Sb should not be first diagonalized as
in D-LDA. Only when D�c − 1 is D-LDA equivalent to
LDA. But there will be no dimensionality reduction in this
case.
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Fig. 1. Simulation results of two Gaussians with 200 samples each. (a)
LDA and D-LDA feature vectors. (b) Projections in LDA feature space.
(c) Projections in D-LDA feature space.

3.3. Issue 2: Relation to subspace-based LDA

It was also claimed in Ref. [1] that D-LDA is equivalent to
subspace-based LDA (e.g., PCA+LDA) in dealing with the
SSS problem, which results in a singular Sw due to the lack
of examples. Although Fisher’s LDA can be equivalently

defined as

Ĵ (W) = |W�StW |
|W�SwW | (12)

with St = Sb + Sw (covariance matrix used in PCA), as
employed in Ref. [1] to support the claim of D-LDA as
“unified PCA + LDA”, the D-LDA algorithm only projects
and diagonalizes Sw (Step 2) after extracting the linear space
of St (PCA) in Step 1. However, this is different from PCA+
LDA, which projects both Sb and Sw in the linear space of
St and simultaneously diagonalize them. Furthermore, it has
not been proven that Eqs. (3) and (12) are equivalent under
the special case D-LDA algorithm.

4. Experiments

To verify our claim from Bayesian decision theory, we
set up a two-class synthetic experiment with �0 = [−1, 0]T,
�0=[0, 1]T, and �=[1, 0.92; 0.92, 1]. The LDA feature vec-
tor is vLDA ≈ [13.0, −12.0]T (Eq. (8)), or [0.74, −0.68]T

after normalization Eq. (9). But the normalized D-LDA so-
lution is vD-LDA =[1, 0]T (Eq. (10)). In terms of classifica-
tion, LDA yields the theoretical recognition rate of 99.5%,
while D-LDA only gives 84.1%. In a simulation with 200
examples per class, the estimated feature vectors of D-LDA
and LDA (along with their Gaussian projections) are shown
in Fig. 1. This clearly illustrates the non-equivalence of
D-LDA to LDA.

Next we compare D-LDA to a traditional subspace-based
LDA method (EFLD, a variation of PCA + LDA which ad-
justs the number of PCA components [7] for the optimal
results) in dealing with the SSS problem in real applica-
tions. The same ORL face dataset (40 subjects) in Ref. [1]
was employed, where 5 out of 10 images per person were
randomly drawn as test images (10 repeats). Although an
average test recognition rate of 90.8% was reported in [1]
(comparable to 91.4% in our result), significant performance
drops (see Table 1) were found for harder versions of the
same dataset: “face cropped” (77.1%) and then “intensity
normalized” (73.4%). As a comparison, EFLD gave 96.5%
for the original data, 88.1% for “cropped”, and 85.6% for
“normalized”, consistently better than D-LDA. This explic-
itly demonstrates that D-LDA has no performance advantage
over subspace-based LDA in dealing with the SSS problem.

Table 1
Classification rate for the ORL dataset. Original data was first tightly
“cropped” to the face region (after smoothing and down-sampling) and
then “normalized” by subtracting mean and dividing by std of pixel
intensities

Original (%) Cropped (%) Normalized (%)

D-LDA 91.4 77.1 73.4
EFLD 96.5 88.1 85.6
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5. Conclusion

In this paper, we presented both theoretical and experi-
mental analysis of the shortcomings of D-LDA. Despite its
recent popularity, we showed that D-LDA is actually a spe-
cial case of LDA, which directly takes the linear space of
class means as the solution. Furthermore, we demonstrated
that D-LDA is not equivalent to traditional subspace-based
LDA in dealing with the SSS problem. Though D-LDA may
work well in applications with well-separated classes, the
method imposes a significant performance limitation in gen-
eral cases.
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