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Abstract

We present a new contour-based background-subtraction
technique to detect people in widely varying thermal im-
agery. Statistical background-subtraction is first used to
identify local regions-of-interest. Within each region, gradi-
ent information in the foreground and background are com-
bined to form a contour saliency map. After thinning, an
A* path-constrained search along watershed boundaries is
used to complete any broken contour segments. Lastly, the
contour image is flood-filled to produce silhouettes. Re-
sults are presented that demonstrate the robustness of the
approach to detect people across a wide range of thermal
imagery using a fixed set of parameters.

1. Introduction
We present a new background-subtraction technique to ro-
bustly detect people in thermal video across different en-
vironmental conditions. Thermal video cameras detect the
amount of thermal radiation emitted/reflected from objects
in the scene, and are applicable to both day and night sce-
narios. Therefore, they are a prime candidate for a persistent
(24-7) video system for surveillance and monitoring. As
long as the thermal properties of a person are slightly dif-
ferent (higher or lower) from the background radiation, the
person region is detectable in thermal imagery. Also, shad-
ows do not appear in thermal imagery unless the person is
stationary for a long duration (shadow gradually cooling the
background).

Though some classic computer vision problems are al-
leviated with the use of thermal imagery, common ferro-
electric (chopper) sensors have their own unique challenges,
including a lower signal-to-noise ratio, uncalibrated white-
black polarity changes, and the “halo effect” that appears
around very hot or cold objects. Most of the previous strate-
gies for object/person detection in thermal imagery have

∗Appears inIEEE Workshop on Object Tracking and Classification Be-
yond the Visible Spectrum, Washington DC, July 2, 2004.

used “hot-spot” algorithms, relying on the assumption that
the person (object) is much hotter than the surrounding en-
vironment. Though this is common in cooler nighttime en-
vironments (or during Winter), it is not always true through-
out the day or across different seasons of the year. Standard
background-subtraction techniques alone are also rendered
ineffective due to the thermal halos and polarity changes.

We propose a new robust background-subtraction algo-
rithm that can be used to detect people in thermal im-
agery regardless of the image polarity and thermal halo.
The approach does not rely on any prior shape models
or motion information, and therefore the method could
be particularly useful for bootstrapping more sophisticated
tracking algorithms. Our approach first uses a standard
background-subtraction technique to identify local regions-
of-interest. The foreground and background gradient infor-
mation within each region are then combined as to high-
light only the person boundary. This boundary is then
thinned and thresholded to form contour fragments. An
A* search algorithm constrained to a local watershed seg-
mentation is then used to complete/close any contour frag-
ments. Finally, the contours are flood-filled to make sil-
houettes. We demonstrate the approach using a single set
of paramters/thresholds across four very different thermal
video sequences recorded from two thermal cameras.

The remainder of this paper is described as follows. We
begin with a review of related work (Sect. 2). Next we
describe the motivation for our approach (Sect. 3). We
then describe the main components of the proposed method
(Sects. 4,5,6), and present experimental results (Sect. 7).
Lastly, we conclude with a summary of the research and
discuss future work (Sect. 8).

2. Related Work

Several methods have been proposed for identifying peo-
ple in images without background-subtraction methodolo-
gies, including the direct use of wavelets [10], coarse-to-
fine edge matching [5], and motion differencing [16, 9].
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Figure 1: Thermal imagery at different environmental conditions recorded from two different cameras and the results from
statistical background-subtraction. (a) Winter-I. (b) Winter-II. (c) Summer-I. (d) Summer-II.

Most of the remaining person detection methods employ
some form of background-subtraction using a single Gaus-
sian background model [17] or a multi-modal Gaussian for-
mulation [13]. Other approaches include the W4 method
for detecting body parts and tracking [6], the three-stage
(pixel/region/frame) Wallflower approach [14], a two-stage
color and gradient technique [8], and a Markov chain Monte
Carlo approach [19].

Recently, person detection using thermal imagery has
been explored [7, 1], but these approaches rely heavily on
the assumption that the person region always has a much
hotter (brighter) appearance than the background (hot-spot
techniques are commonly employed in thermal-based de-
tection schemes [2, 4, 18]). We examine a new contour
analysis technique for detecting people in thermal imagery
that is most related to the color/gradient approach of [8].

3. Motivations for Proposed Approach
Two issues limiting the applicability of standard
background-subtraction and hot-spot methods to ther-
mal imagery produced from uncalibrated ferroelectric
(chopper) thermal sensors1 are the changing thermal
polarity of objects (relative light-dark thermal intensity
mapping) and the halo effect across different environmental
conditions (see top row of Fig. 1). Additionally, the
body of the person is not always uniformly hot or cold.
Clearly, such traditional detection techniques alone will
be ineffective to extract the shape of the people across the
different examples shown in Fig. 1.

Two key observations regarding halos in such thermal
imagery (regardless of the polarity) are that 1) thermal ha-

1Next-generation microbolometers can be used to overcome some of
the problems mentioned, however their resolution and quality are lower
than ferroelectric sensors.

los fade smoothly into the image, and 2) stronger halos
cause the edge/contour information of the person within the
halo to become more pronounced. Based on these observa-
tions, we propose a new background-subtraction technique
for person detection that focuses on the extraction and com-
pletion of edge contours of the people within the halo re-
gions. Because the approach relies on contours, the method
is more stable and robust across very different environmen-
tal conditions, including intensity polarity switches (person
can be bright or dark, or both) and different halo strengths.

4. Region Detection
We begin by identifying localized regions-of-interest
(ROIs) that contain the person (or people) and the sur-
rounding thermal halo. We apply a standard statistical
background-subtraction approach that employs a univari-
ate Gaussian model for each pixel location (a Gaussian
mixture-model [13] could also be used) and identify fore-
ground pixels using the squared Mahalanobis distance

D(x, y) =

{
1 (I(x,y)−µ(x,y))2

σ(x,y)2 > T 2

0 otherwise
(1)

In Fig. 1, we show the background-subtraction results
(with T = 6 and a background model for each sequence cre-
ated from 30 images) for the four different examples. The
thermal halos are quite prominent in Fig. 1(a),(c). Simply
raising the value ofT will not remove the halo in all cases.
Hence, statistical background-subtraction alone is ineffec-
tive at detecting the precise shape of the person.

To extract the ROIs, we apply a 5×5 dilation operator to
the background-subtracted image and employ a connected
components algorithm. Any region with a size less than
approximately 40 pixels is discarded.
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Figure 2: Contour saliency. (a) ROI. (b) Foreground gradient magnitudes. (c) Foreground-background gradient-difference
magnitudes. (d) CSM. (e) tCSM.

5. Contour Detection

We next examine each ROI individually to separate the per-
son (or people) from the surrounding halo. From the earlier
observations regarding thermal halos, the gradient strengths
within the ROI can be used to identify much of the person
boundary. For each ROI, we form acontour saliency map
(CSM), where the value of each pixel in the CSM represents
the confidence/belief of that pixel belonging to the bound-
ary of the person.

A CSM is formed by multiplying the normalized
foreground gradient magnitudes with the normalized
foreground-background gradient-difference magnitudes in
the ROI

CSM =
‖〈Ix, Iy〉‖

α
× ‖〈(Ix −BGx), (Iy −BGy)〉‖

β
(2)

where the normalization factorsα and β are the respec-
tive maximum magnitudes of the foreground gradients and
foreground-background gradient-differences in the ROI.
The range of values in the CSM is [0, 1], with larger values
indicating stronger confidence of belonging to the person
boundary.

The motivations for this formulation are that 1) large
non-person foreground-background gradient-difference
magnitudes resulting from the halo are suppressed (as they
have low foreground gradient magnitudes), and 2) large
non-person foreground gradient magnitudes are suppressed
(as they have small foreground-background gradient-
difference magnitudes). Thus, the CSM preserves the
foreground gradients that are both strongand significantly
different from the background.

For the ROI in Fig. 2(a), extracted from Fig. 1(c),
we show the normalized foreground gradient magnitudes
in Fig. 2(b) and the normalized foreground-background
gradient-difference magnitudes in Fig. 2(c). To calculate
the gradients, Gaussian derivative masks withσ = .75 were
employed. We present the corresponding CSM in Fig. 2(d).

5.1. Thinning
Our next step is to produce a thinned representation of the
CSM, which we call the tCSM. Since the CSM does not
represent true gradients, standard non-maximum suppres-
sion methods that look for local peaks along gradient direc-
tions (as used in the Canny edge detector) cannot be directly
applied. Instead, we use non-maximum suppression to thin
the foregroundgradients to create a binary mask, which is
then multiplied with the CSM to produce the tCSM. The re-
sult of thinning Fig. 2(d) in this manner is shown in Fig.
2(e).

5.2. Thresholding
After thinning, we then threshold the tCSM to select the
most confident segments. A simple K-Means clustering of
the tCSM with 3 clusters (C1=low, C2=medium,C3=high
confidence values) enables an adaptive selection of the
person/non-person contour pixels (motivated by the poten-
tially multi-modal thermal intensity of pixels belonging to
the person region). The pixels belonging to the lowest clus-
ter (C1) are discarded as the background, leaving the re-
maining pixels in the top two clusters (C2, C3) as the person
boundary pixels.

5.2.1. Amplification

To improve the thresholding results we draw upon our ear-
lier observations of thermal halos. If an object (person)
has a high thermal contrast with the background, it will
be surrounded by a halo that makes its boundary signifi-
cantly stronger. This typically results in a distribution that is
much easier to threshold. In the case of weaker thermal con-
trasts, the boundary strengths do not show a distinct person-
background separation, and thus the tCSM is more difficult
to threshold appropriately. Based on this observation, we
develop a method toamplify the tCSM values proportional
to the strength of the contrasts within the ROI.

We begin by thresholding the tCSM using the K-Means
clustering approach described above to provide an initial es-
timate of the confidence (low, medium, high) at each pixel
location in the tCSM. We then compute an amplification
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factorγ from the pixel locations in theforegroundgradient
image using

γ = min(1− median(Mag(C1))
median(Mag(C2,3))

, 1) (3)

where Mag= ‖〈Ix, Iy〉‖ is the foreground gradient mag-
nitude image. The value ofγ is a measure of the gradi-
ent contrast strength within the ROI. Higher values ofγ
denote ROIs where the foreground gradient strengths are
significantly higher than the background gradient strengths
(strong halos). ROIs with more uniform gradient strengths
have lowerγ values (weak halos).

Using the computed amplification factor, the tCSM is ad-
justed as

̂tCSM = tCSMγ (4)

If γ is close to 1 the tCSM does not change significantly.
However, in weak halo ROIs, lowerγ values can dramat-
ically increase the strength of the tCSM pixel values. To
select the final contour pixels, we apply the K-Means clus-
tering method (using 3 clusters) to thêtCSM and remove
any pixels belonging to the bottom cluster. Other methods
of thresholding, such as hysteresis, could also be applied at
this stage.

We show the results using the computed amplification
factor for a strong halo ROI and a weak halo ROI in Fig. 3.
In Fig. 3(c-d), we show the original tCSMs. In Fig. 3(e-
f), we show the amplified tCSMs (̂tCSMs). In the strong
halo case, there was little amplification (γ = .92). In the
weak halo example, the amplification was much stronger
(γ = .44). The final thresholded version Fig. 3(e) is shown
in Fig. 4(a).

6. Contour Completion/Closing

If the resulting thresholded̂tCSM is guaranteed to have un-
broken contours around the person (with no gaps or frag-
ments), then a simple flood-fill operation could be used to
generate the desired silhouettes. However, the contours are
often broken and need to becompleted(i.e., the contours
have no gaps) andclosed(i.e., the contour figure is equiva-
lent to the closure of its interior). Our approach is to first
complete any gaps by searching outward from each gap
endpoint to find another contour pixel. Next, we verify that
the figure contours are closed. Lastly, the result is flood-
filled to produce the silhouettes. To limit the search space
and constrain the solution to have meaningful path comple-
tions/closings, we make use of the watershed transform of
the original CSM.

6.1. Watershed Segmentation
The watershed transform (WT) is a powerful mathematical
morphology tool for segmenting images by partitioning im-
age regions with watershed lines [3, 15]. When computing

(a) (b)

(c) (d)

(e) (f)

Figure 3: Amplification results. (a) Strong halo ROI. (b)
Weak halo ROI. (c) Original tCSM for (a). (d) Original
tCSM for (b). (e) Amplified tCSM for (a). (f) Amplified
tCSM for (b).

a WT, the image is considered as a topological relief where
the elevation is proportional to the graylevel of the pixels.
The determination of the watershed lines from this elevation
surface can be described in terms of both topology [3] and
immersion simulations [15]. In terms of topology, a water-
shed line is intuitively described as “a set of points where a
drop of water, falling there, may flow down towards several
catchment basins of the relief” [3]. When the WT is applied
to a gradient magnitude image, the resulting watershed lines
are found along the edge ridges.

Given a gradient image, there is a high degree of over-
lap between its watershed lines and the result after non-
maximum suppression. Hence, we can use the WT of the
original CSM to provide a meaningful guide to complete
any broken contours derived from the thresholded̂tCSM.
As long as the CSM retainssomeinformation of the ob-
ject/person boundaries, the WT will produce lines along the
boundaries. Even if the WT result is highly over-segmented,
the number of potential watershed lines between gaps will
be smaller than all possible paths. Due to the small size of

4



(a) (b)

(c) (d)

Figure 4: Watershed analysis. (a) Thresholded̂tCSM. (b)
CSM watershed lines overlayed with (a). (c) Contour com-
pletion/closing result. (d) Flood-filled silhouettes.

the ROIs, the cost of the WT is fairly minimal. In Fig. 4(b),
we show the thresholded̂tCSM (from Fig. 4(a)) overlayed
on the WT of the corresponding CSM (from Fig. 2(d)).

6.2. Contour Completion
We first attempt to complete any contour gaps using the
watershed lines as plausible connection pathways. Each
contour fragment endpoint (found using 3×3 neighborhood
analysis) is forced to grow outward towards any other end-
points within a local search window (size limited to half
of the vertical span of the selected contour pixels in the
ROI). If no other local endpoints exist, the remaining con-
tour points in the window are treated as target points. To
force the path to grow outwards, we ignore other selected
contour points within the 3×3 neighborhood of the starting
endpoint.

To find the optimal path, we employ the A* search al-
gorithm [12] that minimizes the expected costthrough the
current pixel location to reach a target point. The Euclidean
distance from the current location to the closest target point
is employed as the heuristic cost function. The valid paths
are restricted to only the watershed lines. The outward
growth of an endpoint (to a target pixel) is terminated if
its path intersects any other existing contour point.

The resulting path for an endpoint may not always pro-
duce a reasonable completion of the gap. For example,
there may be cases when the endpoint simply grows out
and around to a pixel sitting on the endpoint’s own contour
segment (forming a small loop). Therefore, we incorpo-

rate a simple verification step that ensures reasonable path
completion. We first find the pathP1 from the endpoint to
a target point using the approach described above. Then
we attempt a new pathP2 from the endpoint to the desti-
nation point, this time without ignoring the contour points
around the 3×3 neighborhood of the endpoint (as is done
to find P1). If the two paths are equivalent, we keepP1. If
the paths are different, we choose the path with the maxi-
mum overlap with the unthresholded̂tCSM, thus choosing
the path with the most “support”. We compute the amount
of support for a path by counting the number of pixelsn in
the unthresholded̂tCSM that exist along that path. We then
choose betweenP1 andP2 using

P =

{
P1

|n1|
|P1| > |n2|

|P2|
P2 otherwise

(5)

Each gap completion search uses only the original con-
tour points (from the threshold̂tCSM) so that the order of
the gap completion does not influence the final result. Ad-
ditionally, when all gaps are completed, we perform a fi-
nal match-consistency check. If endpointE1 has grown to
some non-endpoint, and another endpointE2 has grown to
E1, we favor theE1–E2 connection and remove the path
from E1 to the non-endpoint.

6.3. Contour Closing

In the second stage, we ensure that every contour in the im-
age is part of a closed loop (required for flood-filling). First,
we region-grow along all contours to identify any contours
that do not form a closed loop (e.g., a line connecting two
closed circles is itself not closed).

For each non-closed contour, we perform the A* search
strategy from one contour endpoint to the other endpoint,
moving along watershed pixels not on that contour2. To find
the solution that creates the minimum number of new con-
tour pixels on the watershed lines, we give no penalty (step
cost) in the A* algorithm for moving along existing con-
tour pixels on the watershed (allowing a “free glide” along
existing contour pixels). If no possible path exists between
the endpoints (no watershed path), we default to a direct
straight-line closing between the endpoints.

The result for the thresholded̂tCSM in Fig. 4(a) after
completion and closing is shown in Fig. 4(c). A simple
flood-fill operation can then be employed to create silhou-
ettes (see Fig. 4(d)).

2For an un-closed contour with multiple endpoints (e.g., a three-prong
connected contour), we compute a priority matrix [11] to select which two
endpoints should be closed first, and then re-estimate the remaining un-
closed contours.
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7. Experiments
We examined the proposed approach on four thermal se-
quences recorded at very different environmental condi-
tions, including different seasons (Winter/Summer) and
time-of-day (afternoon/evening). The sequences were cap-
tured using two different Raytheon ferroelectric thermal
sensor cores (300D, 250D). The number of frames in each
sequence is Winter-I:1466, Winter-II:900, Summer-I:314,
and Summer-II:297. Each sequence had an additional 30-
frame background sequence for learning the statistical back-
ground model to identify the ROIs.

To demonstrate the generality and applicability of the ap-
proach, we extracted silhouettes from each sequence using
the proposed method with thesame parameter/threshold
settings for all sequences. To give flexibility to a human
operator to set the sensitivity of detection, we weight each
resulting silhouette in the image with a contrast measure-
ment calculated from the ratio of the maximum foreground-
background intensity difference within the silhouette region
to the full intensity range of the background image. A fi-
nal sensitivity threshold could easily be used to remove any
minimal-contrast (noise) regions.

In Fig. 5, we show selected frames from the sequences
and the resulting (weighted) silhouettes extracted using our
approach. The silhouette images demonstrate the ability of
the algorithm to reliably detect people across very different
thermal imagery using the same threshold settings. Further-
more, the results show that the method canseparatemulti-
ple people contained within a single ROI.

In Fig. 5(a), the small regions in the top left corner of
each image are people partially occluded by tree branches.
In Fig. 5(b), different people have different thermal con-
trasts with the background, but all are consistently detected.
Also, the silhouette shapes closely match the true person
shapes in the images. In spite of the thermal similarity of
the cross-walk and people in Fig. 5(c), the silhouettes were
extracted and separated quite well. In Fig. 5(d), the algo-
rithm was able to detect reasonable portions of the people
despite the very low thermal person-background differences
(and low gradients). Additionally, a small animal was de-
tected moving down the stairs in the top-right corner in the
first four images.

The overall results of the approach were encouraging
and provide better silhouettes than could be attained using a
single background-subtraction or hot-spot approach. How-
ever, there were some problems that deserve mentioning.
In Fig. 6(a), the thermal intensity of the people is similar
to the background cross-walk line on the pavement. This
causes a reduction of the contour saliency at the overlap-
ping pixels and therefore sometimes resulted in a contour
completion growing slightly into the similar background re-
gion. Similarly, in Fig. 6(b) the thermal similarity of the
people with the background caused portions of the bod-

ies to be deleted from the silhouettes. These problems can
be expected with any “intensity-based” (thermal/grayscale)
method when foreground and background pixels are of sim-
ilar intensity.

8. Summary

We presented a new background-subtraction method to de-
tect people in thermal imagery over a wide range of environ-
mental conditions (including day/night and Winter/Summer
scenarios). Our approach is designed to handle problems re-
lated to halo artifacts and uncalibrated polarity switches that
are typically associated with common ferroelectric (chop-
per) sensors. These problems render classic background-
subtraction and hot-spot detection methods ineffective by
themselves.

Our approach first uses a statistical background-
subtraction technique to identify local regions-of-interest
containing the person (or people) and the surrounding
halo. The foreground and background gradient informa-
tion within each region are then combined into a contour
saliency map. The contour saliency map is thinned and am-
plified based on the strength of the thermal contrasts (halo).
The most salient contours are then selected using an adap-
tive K-Means threshold. To complete/close any broken con-
tour fragments, a watershed-constrained A* search strategy
is used. Lastly, the contours are flood-filled to produce sil-
houettes.

Experiments with four thermal video sequences recorded
at very different environmental conditions and a single set
of parameters/thresholds for the method showed promising
results, including the separation of multiple people within
a single ROI. To further improve the results, we will in-
corporate a multi-modal background model, include addi-
tive motion information into the saliency map, and employ
shaped-based models for tracking.

As the approach is not limited to only extracting silhou-
ettes of people, we will also examine the method for de-
tecting other objects of interest (vehicles). We additionally
plan to formulate a method to quantitatively compare var-
ious background-subtraction algorithms to validate our ap-
proach.
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Figure 6: Problem images. (a) Silhouette extension into the
background. (b) Deletion of body regions.
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(a) Winter-I

(b) Winter-II

(c) Summer-I

(d) Summer-II

Figure 5: Example thermal images and resulting silhouettes (contrast weighted).
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