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1. Introduction

The recent shift in computer vision from static images to video sequences
has focused research on the understanding of action or behavior. In partic-
ular, the lure of wireless interfaces (e.g. [13]) and interactive environments
[11, 3] has heightened interest in understanding human actions. Recently a
number of approaches have appeared attempting the full three-dimensional
reconstruction of the human form from image sequences, with the presump-
tion that such information would be useful and perhaps even necessary to
understand the action taking place (e.g. [22]). This chapter presents an al-
ternative to the three-dimensional reconstruction proposal. We develop a
view-based approach to the representation and recognition of action that
is designed to support the direct recognition of the motion itself.

In previous work [4, 6] we described how people can easily recognize ac-
tion in even extremely blurred image sequences such as shown in Figure 1
and in lowres_action.mov'. Such capabilities argue for recognizing action
from the motion itself, as opposed to first reconstructing a 3-dimensional
model of a person, and then recognizing the action of the model as advo-
cated in [1, 7, 16, 22, 23, 9, 28]. In [4] we proposed a representation and
recognition theory that decomposed motion-based recognition into first de-
scribing where there is motion (the spatial pattern) and then describing
how the motion is moving. The approach is a natural extension of Black
and Yacoob’s work on facial expression recognition [2].

In this chapter we continue to develop this approach. We review the con-
struction of a binary motion-energy image (MEI) which represents where
motion has occurred in an image sequence. We next generate a motion-

"http://vismod.www.media.mit.edu/vismod/demos/actions/lowres action.mov
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Figure 1. Selected frames from video of someone performing an action. Even with almost
no structure present in each frame people can trivially recognize the action as someone
sitting.

history image (MHI) which is a scalar-valued image where intensity is a
function of recency of motion. Taken together, the MEI and MHI can be
considered as a two component version of a temporal template, a vector-
valued image where each component of each pixel is some function of the
motion at that pixel location. These view-specific templates are matched
against the stored models of views of known actions. To evaluate the power
of the representation we evaluate the discrimination power on a set of 18
aerobics exercises. I'inally we present a recognition method which auto-
matically performs temporal segmentation, is invariant to linear changes in
speed, and runs in real-time on a standard platform.

2. Prior work

The number of approaches to recognizing motion and action has recently
grown at a tremendous rate. For an excellent survey on the machine under-
standing of motion (particularly human motion) see the work of Cédras and
Shah [8]. Their review article details methods for extracting motion infor-
mation (e.g. optic flow) and for performing matching. That survey article
also discusses recent work in motion recognition (e.g. lip-reading and ges-
ture recognition). In this chapter we divide the immediately relevant prior
work into two general areas: configuration-based tracking and recognition
and motion-based recognition.
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2.1. CONFIGURATION-BASED TRACKING AND RECOGNITION OF
ACTION

2.1.1. Tracking

The first and most obvious body of relevant work includes the approaches
using structural or appearance-based representations to tracking and un-
derstanding human action. Some believe that a 3-D description is necessary
and sufficient for understanding action (e.g. [16, 7, 23, 14, 22, 15]), while
others choose to analyze the 2-D appearance as a means of interpretation
(e.g. [9, 10, 1, 28]). We now take a closer look at these approaches.

The most common method for attaining the 3-D information in the
action is to recover the pose of the object at each time instant using a
3-D model of the object. A common method for model fitting in these
works is to use a residual measure between the projected model and object
contours (e.g. edges of body in the image). This generally requires a strong
segmentation of foreground/background and also of the individual body
parts to aid the model alignment process. It is difficult to imagine such
techniques could be extended to the blurred sequence of Figure 1.

For example, Rehg and Kanade [22] used a 27 degree-of-freedom (DOF")
model of a human hand in their system called “Digiteyes”. Local image-
based trackers are employed to align the projected model lines to the finger
edges against a solid background. The work of Goncalves et al. [15] pro-
moted 3-D tracking of the human arm against a uniform background using
a two cone arm model and a single camera. Though it may be possible to ex-
tend their approach to the whole body as claimed, it seems unlikely that it
is appropriate for non-constrained human motion with self-occlusion. Hogg
[16] and Rohr [23] used a full-body cylindrical model for tracking walking
humans in natural scenes. Rohr incorporates a 1 DOF pose parameter to
aid in the model fitting. All the poses in a walking action are indexed by a
single number. Here there is only a small subset of poses which can exist.
Gavrila and Davis [14] also used a full-body model (22 DOF', tapered super-
quadrics) for tracking human motion against a complex background. For
simplifying the edge detection in cases of self-occlusion, the user is required
to wear a tight-fitting body suit with contrasting limb colors.

One advantage of having the recovered model is the ability to estimate
and predict the feature locations, for instance edges, in the following frames.
Given the past history of the model configurations, prediction is commonly
attained using Kalman filtering [23, 22, 15] and velocity constraints [21, 14].

Because of the self-occlusions that frequently occur in articulated ob-
jects, some employ multiple cameras and restrict the motion to small re-
gions [22, 14] to help with projective model occlusion constraints. A single
camera is used in [16, 15, 23], but the actions tracked in these works had
little deviation in the depth of motion. Acquiring the 3-D information from



4 AARON F. BOBICK AND JAMES W. DAVIS

image sequences is currently a complicated process, many times necessitat-
ing human intervention or contrived imaging environments.

2.1.2. Recognition

As for action recognition, Campbell and Bobick [7] used a commercially
available system to obtain 3-D data of human body limb positions. Their
system removes redundancies that exist for particular actions and performs
recognition using only the information that varies between actions. This
method examines the relevant parts of the body, as opposed to the entire
body data. Siskind [25] similarly used known object configurations. The
input to his system consisted of line-drawings of a person, table, and ball.
The positions, orientations, shapes, and sizes of the objects are known at all
times. The approach uses support, contact, and attachment primitives and
event logic to determine the actions of dropping, throwing, picking up, and
putting down. These two approaches address the problem of recognizing
actions when the precise configuration of the person and environment is
known while the methods from the previous section concentrate on the
recovery of the object pose.

In contrast to the 3-D reconstruction and recognition approaches, others
attempt to use only the 2-D appearance of the action (e.g. [1, 10, 9, 28]).
View-based representations of 2-D statics are used in a multitude of frame-
works, where an action is described by a sequence of 2-D instances/poses of
the object. Many methods require a normalized image of the object (usually
with no background) for representation. For example, Cui et al. [9], Darrell
and Pentland [10], and also Wilson and Bobick [26] present results using
actions (mostly hand gestures), where the actual grayscale images (with no
background) are used in the representation for the action. Though hand
appearances remain fairly similar over a wide range of people, with the
obvious exception of skin color, actions that include the appearance of the
total body are not as visually consistent across different people due to ob-
vious natural variations and different clothing. As opposed to using the
actual raw grayscale image, Yamato et al. [28] examines body silhouettes,
and Akita [1] employs body contours/edges. Yamato utilizes low-level sil-
houettes of human actions in a Hidden Markov Model (HMM) framework,
where binary silhouettes of background-subtracted images are vector quan-
tized and used as input to the HMMs. In Akita’s work [1], the use of edges
and some simple 2-D body configuration knowledge (e.g. the arm is a
protrusion out from the torso) are used to determine the body parts in
a hierarchical manner (first find legs, then head, arms, trunk) based on
stability. Individual parts are found by chaining local contour information.
These two approaches help alleviate some of the variability between people
but introduce other problems such as the disappearance of movement that
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happens to be within the silhouetted region and also the varying amount
of contour/edge information that arises when the background or clothing
is high versus low frequency (as in most natural scenes). Also, the problem
of examining the entire body, as opposed to only the desired regions, still
exists, as it does in much of the 3-D work.

Whether using 2-D or 3-D structural information, many of the ap-
proaches discussed so far consider an action to be comprised of a sequence
of poses of an object. Underlying all of these techniques is the requirement
that there be individual features or properties that can be extracted and
tracked from each frame of the image sequence. Hence, motion understand-
ing is really accomplished by recognizing a sequence of static configurations.
This understanding generally requires previous recognition and segmenta-
tion of the person [21]. We now consider recognition of action within a
motion-based framework.

2.2. MOTION-BASED RECOGNITION

Direct motion recognition [21, 24, 20, 2, 27, 25, 12, 4, 6] approaches attempt
to characterize the motion itself without reference to the underlying static
poses of the body. Two main approaches include the analysis of the body
region as a single “blob-like” entity and the tracking of predefined regions
(e.g. legs, head, mouth) using motion instead of structural features.

Of the “blob-analysis” approaches, the work of Polana and Nelson [21],
Shavit and Jepson [24], and also Little and Boyd [20] are most applica-
ble. Polana and Nelson use repetitive motion as a strong cue to recognize
cyclic walking motions. They track and recognize people walking in out-
door scenes by gathering a feature vector, over the entire body, of low-level
motion characteristics (optical-flow magnitudes) and periodicity measure-
ments. After gathering training samples, recognition is performed using a
nearest centroid algorithm. By assuming a fixed height and velocity of each
person, they show how their approach is extendible to tracking multiple
people in simple cases. Shavit and Jepson also take an approach using the
gross overall motion of the person. The body, an animated silhouette figure,
is coarsely modeled as an ellipsoid. Optical flow measurements are used to
help create a phase portrait for the system, which is then analyzed for the
force, rotation, and strain dynamics. Similarly, Little and Boyd recognize
people walking by analyzing the motion associated with two ellipsoids fit
to the body. One ellipsoid is fit using the motion region silhouette of the
person, and the other ellipsoid is fit using motion magnitudes as weighting
factors. The relative phase of various measures (e.g. centroid movement,
weighted centroid movement, torque) over time for each of the ellipses char-
acterizes the gait of several people.
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There is a group of work which focuses on motions associated with facial
expressions (e.g. characteristic motion of the mouth, eyes, and eyebrows) us-
ing region-based motion properties [27, 2, 12]. The goal of this research is to
recognize human facial expressions as a dynamic system, where the motion
of interest regions (locations known a priori) is relevant. Their approaches
characterize the expressions using the underlying motion properties rather
than represent the action as a sequence of poses or configurations. For Black
and Yacoob [2], and also Yacoob and Davis [27], optical flow measurements
are used to help track predefined polygonal patches placed on interest re-
gions (e.g. mouth). The parameterization and location relative to the face
of each patch was given a priori. The temporal trajectories of the motion
parameters were qualitatively described according to positive or negative
intervals. Then these qualitative labels were used in a rule-based, temporal
model for recognition to determine expressions such as anger or happiness.
Recently, Ju, Black, and Yacoob [19] have extended this work with faces
to include tracking the legs of a person walking. As opposed to the sim-
ple, independent patches used for faces, an articulated three-patch model
was needed for tracking the legs. Many problems, such as large motions,
occlusions, and shadows, make motion estimation in that situation more
challenging than for the facial case. We extended this expression recogni-
tion approach by applying a similar framework to the domain of full-body
motion [5].

Optical flow, rather than patches, was used by Essa [12] to estimate
muscle activation on a detailed, physically-based model of the face. One
recognition approach classifies expressions by a similarity measure to the
typical patterns of muscle activation. Another recognition method matches
motion energy templates derived from the muscle activations. These tem-
plates compress the activity sequence into a single entity. In this chapter,
we develop similar templates, but our templates incorporate the temporal
motion characteristics.

3. Temporal templates

Our goal is to construct a view-specific representation of action, where ac-
tion is defined as motion over time. For now we assume that either the
background is static, or that the motion of the object can be separated
from either camera-induced or distractor motion. At the conclusion of this
chapter we discuss methods for eliminating incidental motion from the pro-
cessing.

In this section we define a multi-component image representation of
action based upon the observed motion. The basic idea is to construct a
vector-image which can be matched against stored representations of known
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Figure 2. Example of someone sitting. Top row contains key frames; bottom row is
cumulative motion images starting from Frame 0.

actions; this image is used as a temporal template.

3.1. MOTION-ENERGY IMAGES

Consider the example of someone sitting, as shown in Figure 2. The top row
contains key frames in a sitting sequence. The bottom row displays cumu-
lative binary motion images — to be described momentarily — computed
from the start frame to the corresponding frame above. As expected the
sequence sweeps out a particular region of the image; our claim is that the
shape of that region (where there is motion) can be used to suggest both
the action occurring and the viewing condition (angle).

We refer to these binary cumulative motion images as motion-energy
images (MEI). Let I(z,y,t) be an image sequence, and let D(z,y,t) be
a binary image sequence indicating regions of motion; for many applica-
tions image-differencing is adequate to generate D. Then the binary MEI
E.(z,y,t)is defined

T—1

E(z,y,t)= U D(z,y,t—1)

=0

We note that the duration 7 is critical in defining the temporal extent of an
action. Fortunately, in the recognition section we derive a backward-looking
(in time) algorithm which can dynamically search over a range of 7.
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-90° -70° -40° -20°

Figure 3.  MEIs of sitting action over 90° viewing angle. The smooth change implies
only a coarse sampling of viewing direction is necessary to recognize the action from all
angles.

In Figure 3 we display the MEIs of viewing a sitting action across 90°.
In [4] we exploited the smooth variation of motion over angle to compress
the entire view circle into a low-order representation. Here we simply note
that because of the slow variation across angle, we only need to sample the
view sphere coarsely to recognize all directions. In the evaluation section of
this chapter we use samplings of every 30° to recognize a large variety of
motions.

3.2. MOTION-HISTORY IMAGES

To represent how (as opposed to where) motion the image is moving we
form a motion-history image (MHI). In an MHI H., pixel intensity is a
function of the temporal history of motion at that point. For the results
presented here we use a simple replacement and decay operator:

- (T if D(z,y,t)=1
HT(‘ray7t) - { maX((LHﬂ_(g;)y)t — 1) — 1) otherwise

The result is a scalar-valued image where more recently moving pixels are
brighter. Examples of MHIs are presented in Figure 4 and the dynamic
construction of an MHI is illustrated in mhi_generation.mov? Note that
the MEI can be generated by thresholding the MHI above zero.

One possible objection to the approach described here is that there is
no consideration of optic flow, the direction of image motion. In response,
it is important to note the relation between the construction of the MHI
and direction of motion. Consider the waving example in Figure 4 where
the arms fan upwards. Because the arms are isolated components — they
do not occlude other moving components — the motion-history image im-
plicitly represents the direction of movement: the motion in the arm down

*http://vismod.www.media.mit.edu/vismod/demos/actions/mhi_generation.mov
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sit-down MHI

arms-wave MHI

crouch-down crouch-down MHI

Figure 4. Action moves along with their MHIs used in a real-time system.

position is “older” than the motion when the arms are up. For these types of
articulated objects, and for simple movements where there is not significant
motion self-occlusion, the direction of motion is well represented using the
MHI. As motions become more complicated the optic flow is more difficult
to discern, but is typically not lost completely.

3.3. EXTENDING TEMPORAL TEMPLATES

The MEI and MHI are two components of a vector image designed to encode
a variety of motion properties in a spatially indexed manner. Other possible
components of the temporal templates include power in directional motion
integrated over time (e.g. “in this pixel there has been a large amount
of motion in the down direction during the integrating time window”) or
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the spatially localized periodicity of motion (a pixel by pixel version of
Polana and Nelson [21]). The vector-image template is similar in spirit to
the vector-image based on orientation and edges used by Jones and Malik
[18] for robust stereo matching.

For the results in this chapter we use only the two components derived
above (MEI and MHI) for representation and recognition. We are currently
considering other components to improve our performance.

4. Action Discrimination

4.1. MATCHING TEMPORAL TEMPLATES

To construct a recognition system, we need to define a matching algorithm
for the temporal template. Because we are using an appearance-based ap-
proach, we must first define the desired invariants for the matching tech-
nique. As we are using a view sensitive approach, it is desirable to have a
matching technique that is as invariant as possible to the imaging situa-
tion. Therefore we have selected a technique which is rotation (in the image
plane), scale, and translation invariant.

We first collect training examples of each action from a variety of view-
ing angles. Given a set of MEIs and MHIs for each view/action combination,
we compute statistical descriptions of the these images using moment-based
features. Our current choice are 7 Hu moments [17] which are known to
yield reasonable shape discrimination in a translation- and scale-invariant
manner (See appendix). For each view of each action a statistical model
of the moments (mean and covariance matrix) is generated for both the
MEI and MHI. To recognize an input action, a Mahalanobis distance is
calculated between the moment description of the input and each of the
known actions. In this section we analyze this distance metric in terms of
its separation of different actions.

Note that we have no fundamental reason for selecting this method of
scale- and translation-invariant template matching. The approach outlined
has the advantage of not being computationally taxing making real-time
implementation feasible; one disadvantage is that the Hu moments are dif-
ficult to reason about intuitively. Also, we note that the matching methods
for the MEI and MHI need not be the same; in fact, given the distinction
we make between where there is motion from how the motion is moving
one might expect different matching criteria.

4.2. TESTING ON AEROBICS DATA: ONE CAMERA

To evaluate the power of the temporal template representation, we recorded
video sequences of 18 aerobics exercises performed several times by an expe-
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13 14 15 16 17 18

Figure 5. A single key frame and MEI from the frontal view of each of 18 aerobics
exercises used to test the representation.
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Closest Closest Correct Median | Rank
Dist Move Dist Dist
Test 1 1.43 4 1.44 2.55 2
2 3.14 2 3.14 12.00 1
3 3.08 3 3.08 8.39 1
4 0.47 4 0.47 2.11 1
5 6.84 5 6.84 19.24 1
6 0.32 10 0.61 0.64 7
Test 7 0.97 7 0.97 2.03 1
8 | 20.47 8 20.47  35.89 1
9 1.05 8 1.77 2.37 4
10| 0.14 10 0.14 0.72 1
11| 0.24 11 0.24 1.01 1
12| 0.79 12 0.79 4.42 1
Test 13| 0.13 6 0.25 0.51 3
14| 4.01 14 4.01 7.98 1
15| 0.34 15 0.34 1.84 1
16| 1.03 15 1.04 1.59 2
17| 0.65 17 0.65 2.18 1
18| 0.48 10 0.51 0.94 4

TABLE 1. Test results using one camera at 30° off
frontal. Each row corresponds to one test move and
gives the distance to the nearest move (and its index),
the distance to the correct matching move, the median
distance, and the ranking of the correct move.

rienced aerobics instructor. The sequence aerobic_action.mov® provides
an example. Seven views of the action — +90° to —90° in 30° increments
in the horizontal plane — were recorded. Figure 5 shows the frontal view
of one key frame for each of the moves along with the frontal MEL. We take
the fact that the MEI makes clear to a human observer the nature of the
motion as anecdotal evidence of the strength of this component of the rep-
resentation. For this experiment the temporal segmentation and selection
of the time window over which to integrate were performed manually. Later
we will detail a self-segmenting, time-scaling recognition system.

We constructed the temporal template for each view of each move, and
then computed the Hu moments on each component. To do a useful Ma-

*http://vismod.www.media.mit.edu/vismod/demos/actions/aerobic_action.mov
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Figure 6. An example of MHIs with similar statistics. (a) Test input of move 13 at 30°.
(b) Closest match which is move 6 at 0°. (¢) Correct match.

halanobis procedure would require watching several different people per-
forming the same actions; this multi-subject approach is taken in the next
section where we develop a recognition procedure.

Instead, we design the experiment to be a measurement of confusion. A
new test subject performed each move and the input data was recorded by
two cameras viewing the action at approximately 30° to left and 60° to the
right of the subject. The temporal template for each of the two views of the
test input actions was constructed, and the associated moments computed.

Our first test uses only the left (30°) camera as input and matches
against all 7 views of all 18 moves (126 total). We select as a metric a pooled
independent Mahalanobis distance using a diagonal covariance matrix to
accommodate variations in magnitude of the moments. Table 1 displays
the results. Indicated are the distance to the move closest to the input (as
well as its index), the distance to the correct matching move, the median
distance (to give a sense of scale), and the ranking of the correct move in
terms of least distance.

The first result to note is that 12 of 18 moves are correctly identified
using the single view. This performance is quite good considering the com-
pactness of the representation (a total of 14 moments from two correlated
motion images) and the large size of the target set. Second, the typical
situation in which the best match is not the correct move, the difference
in distances from the input to the closest move versus the correct move is
small compared to the median distance. Examples of this include test moves
1,9, 13, 16, 18. In fact for moves 1, 16, 18 the difference is negligible.

To analyze the confusion difficulties further consider the example shown
in Figure 6. Displayed here, left to right, are the input MHI (move 13 at
view angle 30°), the closest match MHI (move 6 at view angle 0°), and
the “correct” matching MHI. The problem is that an alternative view of
a different action projects into a temporal template with similar statistics.
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For example, consider sitting and crouching actions when viewed from the
front. The observed motions are almost identical, and the coarse temporal
template statistics do not distinguish them well.

4.3. COMBINING MULTIPLE VIEWS

A simple mechanism to increase the power of the method is to use more
than one camera. Several approaches are possible. For this experiment,
we use two cameras and find the minimum sum of Mahalanobis distances
between the two input templates and two stored views of an action that
have the correct angular difference between them, in this case 90°. The
assumption embodied in this approach is that we know the approximate
angular relationship between the cameras.

Table 2 provides the same statistics as the first table, but now using
two cameras. Notice that the classification now contains only 3 errors. The
improvement of the result reflects the fact that for most pairs of this suite
of actions, there is some view in which they look distinct. Because we have
90° between the two input views the system can usually correctly identify
most actions.

We mention that if the approximate calibration between cameras is
not known (and is not to be estimated) one can still logically combine
the information by requiring consistency in labeling. That is, we remove
the inter-angle constraint, but do require that both views select the same
action. The algorithm would be to select the move whose Mahalanobis
sum is least, regardless of the angle between the target views. If available,
angular order information — e.g. camera 1 is to the left of camera 2 —
can be included. When this approach is applied to the aerobics data shown
here we still get similar discrimination. This is not surprising because the
input views are so distinct.

To analyze the remaining errors, consider Figure 7 which shows the in-
put for move 16. Left to right are the 30° MHIs for the input, the best
match (move 15), and the correct match. The test subject performed the
move much less precisely than the original aerobics instructor. Because we
were not using a Mahalanobis variance across subjects, the current experi-
ment could not accommodate such variation. In addition, the test subject
moved her body slowly while wearing low frequency clothing resulting in
an MHI that has large gaps in the body region. We attribute this type
of failure to our simple (i.e. naive) motion analysis; a more robust motion
detection mechanism would reduce the number of such situations.
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Closest Closest Correct Median | Rank
Dist Move Dist Dist
Test 1 2.13 1 2.13 6.51 1
2 | 12.92 2 12.92  19.58 1
3 7.17 3 7.17 18.92 1
4 1.07 4 1.07 7.91 1
5 | 16.42 5 16.42  32.73 1
6 0.88 6 0.88 3.25 1
Test 7 3.02 7 3.02 7.81 1
8 | 36.76 8 36.76  49.89 1
9 5.10 8 6.74 8.93 3
10| 0.68 10 0.68 3.19 1
11| 1.20 11 1.20 3.68 1
12| 2.77 12 2.77 15.12 1
Test 13| 0.57 13 0.57 2.17 1
14| 6.07 14 6.07 16.86 1
15| 2.28 15 2.28 8.69 1
16| 1.86 15 2.35 6.72 2
17| 2.67 8 3.24 7.10 3
18| 1.18 18 1.18 4.39 1

TABLE 2. Results using two cameras where the angular
interval is known and any matching views must have the
same angular distance.

15

Figure 7. Example of error where failure is cause by both the inadequacy of using image
differencing to estimate image motion and the lack of the variance data in the recognition

procedure.
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5. Segmentation and recognition

The final element of performing recognition is the temporal segmentation
and matching. During the training phase we measure the minimum and
maximum duration that an action may take, 7,,;, and 7,,,.. If the test
actions are performed at varying speeds, we need to choose the right 7
for the computation of the MEI and the MHI. Our current system uses a
backward looking variable time window. Because of the simple nature of
the replacement operator we can construct a highly efficient algorithm for
approximating a search over a wide range of 7.

The algorithm is as follows: At each time step a new MHI H, (z,y,1)
is computed setting T = T,,42, Where 7,4, is the longest time window we
want the system to consider. We choose AT to be (Timazr — Tmin)/(n — 1)
where n is the number of temporal integration windows to be considered.?
A simple thresholding of MHI values less than (7— A7) followed by a scaling
operation generates H(,_a,) from H,. Iterating we compute all n MHIs at
each time step. Binarization of the MHIs yields the corresponding MEIs.

After computing the various MEIs and MHIs, we compute the Hu mo-
ments for each image. We then check the Mahalanobis distance of the MEI
parameters against the known view /action pairs; the mean and the covari-
ance matrix for each view/action pair is derived from multiple subjects
performing the same move. Any action found to be within a threshold dis-
tance of the input is tested for agreement of the MHI. If more than one
action is matched, we select the action with the smallest distance.

Our first experimental system recognizes 180° views of the actions sit-
ting, arm waving, and crouching (See Figure 4). The training required four
people and sampling the view circle every 45°. The system performs well,
rarely misclassifying the actions. The errors which do arise are mainly
caused by problems with image differencing and also due to our approxi-
mation of the temporal search window n < (Tu4z — Tmin + 1). The sequence
two_cam_demo .mov® provides a demonstration of this two camera technique.
An avatar shown in the bottom window changes based upon the recognition
state of the system.

The system runs at approximately 9 Hz using 2 CCD cameras con-
nected to a Silicon Graphics 200MHz Indy; the images are digitized at a
size of 160x120. For these three moves 7,,4,=19 (approximately 2 seconds),
Tmin = 11 (approximately 1 second), and we chose n = 6. The comparison
operation is virtually no cost in terms of computational load, so adding

4Icleally 7 = Tmaz — Tmin + 1 Tesulting in a complete search of the time window between
Tmaz and Tmin. Only computational limitations argue for a smaller n.
“http://vismod.www.media.mit.edu/vismod/demos/actions/two_cam_demo.mov
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more actions does not affect the speed of the algorithm, only the accuracy
of the recognition.

6. Extensions, problems, and applications

We have presented a novel representation and recognition technique for
identifying actions. The approach is based upon temporal templates and
their dynamic matching in time. Initial experiments in both measuring the
sensitivity of the representation and in constructing real-time recognition
systems have shown the effectiveness of the method.

There are, of course, some difficulties in the current approach. Several of
these are easily rectified. As mentioned, a more sophisticated motion detec-
tion algorithm would increase robustness. Also, as developed, the method
assumes all motion present in the image should be incorporated into the
temporal templates. Clearly, this approach would fail when two people are
in the field of view. To implement our real-time system we use a tracking
bounding box which attempts to isolate the relevant motions.

A worse condition is when one person partially occludes another, making
separation difficult, if not impossible. Here multiple cameras is an obvious
solution. Since occlusion is view angle specific, multiple cameras reduce
the chance the occlusion is present in all views. For monitoring situations,
we have experimented with the use of an overhead camera to select which
ground based cameras have a clear view of a subject and where the subject
would appear in each image.

6.1. INCIDENTAL MOTION

A more serious difficulty arises when the motion of part of the body is not
specified during an action. Consider, for example, throwing a ball. Whether
the legs move is not determined by the action itself, inducing huge variabil-
ity in the statistical description of the temporal templates. To extend this
paradigm to such actions requires some mechanism to automatically mask
away regions of this type of motion. Qur current thinking is to process only
the motion signal associated with the dominant motions.

Two other examples of motion that must be removed are camera motion
and locomotion (if we assume the person is performing some action while
locomoting and what we want to see is the underlying action). In both
instances the problem can be overcome by using a body centered motion
field. The basic idea would be to subtract out any image motion induced by
camera movement or locomotion. Of these two phenomena, camera motion
elimination is significantly easier because of the over constrained nature of
estimating egomotion. Our only insight at this point is that because the
temporal template technique does not require accurate flow fields it may
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Figure 8. 'The KiDsRooM interactive play-space. Using a modified version of temporal
templates the room responds to the actions of the children. All sensing is performed using
vision from 3 cameras.

be necessary only to approximately compensate for these effects and then
to threshold the image motion more severely than we have done to date.

6.2. THE KIDSROOM: AN APPLICATION

We conclude by mentioning a recent application we developed in which
we employed a version of the temporal template technique described. On
October 30th, 1996 we debuted The KidsRoom, an interactive play-space
for children [3]. The basic idea is that the room is aware of the children
(maximum of 4) and takes them through a story where the responses of the
room are affected by what the children do. Computers control the lighting,
sound effects, performance of the score, and illustrations projected on the
two walls of the room that are actually video screens. The current scenario
is an adventurous trip to Monsterland; a snapshot is shown in Figure 8.
In the last scene the monsters appear and teach the children to dance
— basically to perform certain actions. Using a modified version of the
MEIs® the room can compliment the children on well performed moves
(e.g. spinning) and then turn control of the situation over to them: the
monsters follow the children if the children perform the moves they were
taught. The interactive narration coerces the children to room locations
where occlusion is not a problem. Of all the vision processes required, the

5The MEIs were computed from background subtracted images instead of binary
motion images. This change was necessary because of the high variability of incidental
body motion. By using the background subtracted images the body was always included.



ACTION RECOGNITION USING TEMPORAL TEMPLATES 19

modified temporal template is one of the more robust. We take the ease of
use of the method to be an indication of its potential.
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General moments

The two-dimensional (p 4+ ¢)th order moments of a density distribution
function p(z,y) (e.g. image intensity) are defined in terms of Riemann
integrals as

mpqu_ /_ aPylp(z,y)dzdy, (1)

for p,g=10,1,2,---.

B.

Moments invariant to translation

The central moments p,, are defined as

fpg = V/_O:o V/_O;(.r — :E)p(y — ?)qp(% y)d('r - i)d(y - 37) ) (2)

where

&I

m10/m00 ’

m01/m00 .

i~
l

It is well known that under the translation of coordinates, the central

moments do not change, and are therefore invariants under translation. It
is quite easy to express the central moments fi,, in terms of the ordinary
moments my,. For the first four orders, we have

Moo = Moo = K
pio = 0

por = 0

fizg = Mmoo — pi’

M1l = M1 — pUTyY
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o2 = moz — Py’

3o = M3 — 3mooT + 2;@3

a1 = g — mao — 2mi T + 2T’y
fiz = M1z — Mo — 2m11y + 2uTY°
fios = mo3 — 3mo2y + 2uy°

C. Moments invariant to translation, scale, and orientation

For the second and third order moments, we have the following seven trans-
lation, scale, and orientation moment invariants:

Vi = M2+ fo2

ve = (pa0 — ,u02)2 + 4#%1

vs = (pso — 3p12)® + (3p21 — pos)?

va = (uso+ M12)2 + (p21 + ,u03)2

vs = (p30 — 3p12)(ps0 + p12)[(ps0 + ,u12)2 — 3(pa1 + ,u03)2]

+(3p21 — pro3)(p21 + foa)
BBpso + p2)® = (p21 + pos)’]
ve = (pa20 — po2)(p30 + ,u12)2 — (po1 + NOS)Z]
+4p11(p3o + p12)(p21 + po3)
v = (3p2r — pos)(p30 + pa2)[(p30 + ,u12)2 — 3(pa1 + ,u03)2]
—(pt30 — 3p12)(pt21 + 103)[3(pa0 + p12)? — (pa1 + ptos)?]

These moments can used for pattern identification not only independently
of position, size, and orientation but also independently of parallel projec-
tion.

D. Moments invariant to translation and scale

Under the scale transformation for moment invariants we have
1 _ o ptgt2
lupq =« :upq . (3)
By eliminating a between the zeroth order relation,

p'=atp (4)
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and the remaining ones, we have the following absolute translation and
scale moment invariants:

'“;)q _ HKpq (5)
(Iu/)(p+q)/2+1 B Iu(p+q)/2+1 ’

forp+¢=2,3,--and pfy = py, = 0.



