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An expressive three-mode principal components  
model for gender recognition 
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We present a three-mode expressive-feature model for recognizing gender (female, male) from point-light displays of 
walking people. Prototype female and male walkers are initially decomposed into a subspace of their three-mode 
components (posture, time, and gender). We then apply a weight factor to each point-light trajectory in the basis 
representation to enable adaptive, context-based gender estimations. The weight values are automatically learned from 
labeled training data. We present experiments using physical (actual) and perceived (from perceptual experiments) 
gender labels to train and test the system. Results with 40 walkers demonstrate greater than 90% recognition for both 
physically and perceptually-labeled training examples. The approach has a greater flexibility over standard squared-error 
gender estimation to successfully adapt to different matching contexts. 
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Introduction 
Popularized by Johansson in the early 1970s (Johans-

son, 1973), point-light displays provide an ideal means to 
study the contribution of motion to the perception of bio-
logical (and mechanical) movements. In classic experiments 
examining human movements, the visual details of the 
human body were hidden except for several bright point-
lights located at the major limb joints (shown against a dark 
background). Although sometimes difficult to interpret 
from single or multiple static images (Johansson, 1973; 
Kozlowski & Cutting, 1977), when viewed in a sequence, 
the moving point-lights convey a vivid and compelling per-
cept of human movement. Observers can further extract 
many subtle yet informative style properties of the move-
ment. People can recognize gender from gait and fa-
cial/head motion (Barclay, Cutting, & Kozlowski, 1978; 
Cutting, Proffitt, & Kozlowski, 1978; Hill & Johnston, 
2001; Kozlowski & Cutting, 1977; Mather & Murdoch, 
1994; Troje, 2002), identify individuals from gait patterns 
and arm movements (Beardsworth & Buckner, 1981; Cut-
ting & Kozlowski, 1977; Hill & Pollick, 2000), infer emo-
tions from dance and arm movements (Brownlow, Dixon, 
Egbert, & Radcliffe, 1997; Dittrich, Troscianko, Lea, & 
Morgan, 1996; Pollick, Paterson, Bruderlin, & Stanford, 
2001; Walk & Homan, 1984), and estimate dynamics such 
as the weight of a lifted object (Bingham, 1987; Bingham, 
1993; Runeson & Frykholm, 1981; Runeson & Frykholm, 
1983). 

Regarding gender recognition from point-lights, both 
human perception and computational algorithms for dis-
criminating female from male walking styles have been ex-

plored in the past several years. Results have shown gender 
recognition performance by humans in the range of 46–
86% for different actions, ages, and views (Barclay et al., 
1978; Hirashima, 1999; Kozlowski & Cutting, 1977; Mon-
tepare & Zebrowitz-McArthur, 1988; Runeson & Fryk-
holm, 1983; Troje, 2002). A recent pattern recognition 
framework (Troje, 2002) reported a higher 92.5% recogni-
tion rate on adult walkers. Much of the effort on gender 
recognition has focused on the manual identification of key 
features that enable the perceptual classification between 
female and male walking styles. Factors related to speed, 
arm swing, shoulder-hip lengths, inversion, and body sway 
have been examined. However, to date there is no conclu-
sive evidence as to which features actually drive the dis-
crimination process. No single feature is likely to be suffi-
cient, but rather it seems multiple combined features are 
involved. 

In this work, we evaluate our new expressive three-
mode pattern recognition approach (Davis, Gao, & 
Kannappan, 2002; Davis & Gao, 2003a; Davis & Gao, 
2003b) for recognizing the gender of adult point-light 
walkers. The term “expressive” refers to the framework’s 
ability to weight the representational units differently to 
best express (capture) the intrinsic style/gender variations 
(instead of manually assigning the key features). The 
framework automatically learns the key features for a given 
representation (e.g., point-light trajectories) by tuning a 
weight value for each representational unit (e.g., each 
trajectory) to bias the numerical estimation of class labels to 
match the target training labels (e.g., FEMALE = –1, MALE 
= +1). 
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The approach first constructs an efficient principal 
components analysis (PCA) representation of point-light 
trajectories for a prototype (average) female and male 
walker. A large set of gender-labeled point-light walkers are 
then used to automatically learn which point-light trajecto-
ries (and in what combination) in the prototype PCA rep-
resentation best express the gender of the walkers. The non-
expressive trajectories are removed from consideration, and 
the remaining expressive trajectories are weighted in the 
PCA representation to bias the gender estimation method 
to produce the desired gender labels. The approach com-
bines the benefits of PCA and machine learning into a sin-
gle, robust gender classifier. 

The generality of the approach is found in the ability to 
train the system to recognize different gender contexts of 
the walkers. The typical gender context is to recognize the 
true physical gender of the walkers (is female/male). An 
alternate context for the system could be to recognize the 
“perceived” gender of the walker (appears female/male). For 
example, a female walker could be consistently perceived by 
several observers to have a male-like gait pattern (appear-
ance vs. truth). Both of these contexts may have particular 
applied relevance. For automatic visual surveillance, recog-
nizing the physical gender is of most concern, whereas a 
model of the perceived gender is most important for com-
puter animation tools to give the best appearance of gen-
der. Models of perceived gender are also important for 
studying how humans discriminate gender. As different 
expressive weights may be required for different recognition 
contexts (physical or perceived gender), the approach is 
designed to automatically learn the weight values for a spe-
cific context of labeled training data. 

We demonstrate the applicability of our framework for 
gender recognition by training and evaluating our model 
with 40 point-light walkers (20 female, 20 male) labeled 
with their true physical gender and also with their per-
ceived gender (obtained from a perceptual classification 
task). Results of our expressive PCA model show a higher 
classification rate attained for both contexts than with a 
standard non-expressive PCA model (with no weights). 

Related work 
Gender recognition from point-lights has received 

much attention during the past few decades. The first ma-
jor experiment was presented in Kozlowski and Cutting 
(1977) with six walkers (three females, three males) of ap-
proximately the same height and weight recorded at a sagit-
tal view. They demonstrated that human observers could 
classify the gender of the walkers with an average recogni-
tion rate of 63%, including one female walker who was 
identified as male by most participants. Alterations such as 
varying the arm swing, changing the walking speed, and 
occluding portions of the body were examined and found 
not to significantly influence recognition performance. In-
terestingly, they suggest that gender recognition is even pos-

sible from viewing only two moving ankle points 
(Kozlowski & Cutting, 1977; Kozlowski & Cutting, 1978). 

A further study of gender recognition from point-lights 
was presented in Barclay et al. (1978), where temporal and 
spatial factors were examined. It was reported that success-
ful gender recognition required exposure to approximately 
two walking cycles. The rendering speed was also found to 
have a strong influence over recognition. When the move-
ments were recorded at normal walking speeds, but played 
back at an abnormally slow rate (about 3 times slower), the 
recognition rate dropped to almost chance level. Degraded 
displays, in which the point-lights were diffused into one 
bright blob, were also examined and shown to degrade rec-
ognition performance to chance level. 

The effect of inversion on the point-lights was also in-
vestigated in Barclay et al. (1978). Interestingly, the gender 
assignments were significantly reversed (i.e., male walkers 
were seen as females, and vice versa). A view-based explana-
tion was proposed based on the shoulder-hip ratio, in 
which men tend to have broader shoulders and smaller 
hips than women. With a perceptual bias to upright fig-
ures, the shoulder points in the inverted display would be 
perceived by the observer as hip points (and the inverted 
hip points as shoulder points), thus causing the interchange 
of the gender labels. Additional studies in Cutting et al. 
(1978) supported the shoulder-hip ratio concept and pro-
posed a related center-of-moment feature of the torso. 

The shoulder-hip ratio and center-of-moment features 
(Barclay et al., 1978; Cutting et al., 1978) are mainly based 
on the structural differences between male and female 
walkers. However, there are certainly dynamic visual fea-
tures of movement that contribute to recognition. By set-
ting structural and dynamic features into confliction using 
a synthetic point-light walker, experiments in Mather and 
Murdoch (1994) found that shoulder sway was an effective 
cue to gender at the frontal view (as supported by Murray, 
Kory, & Sepic, 1970). Structural and dynamic information 
were also compared in Troje (2002), where dynamic-only 
stimuli (movements applied to average postures) produced 
better results than with structural information (postures 
using averaged motions). 

Most of the aforementioned experiments on recogniz-
ing the gender of walkers were conducted using a side-view 
presentation of the walkers to observers. Other experiments 
have been conducted to examine the effect of view angle on 
gender recognition performance. In Hirashima (1999), 
Mather and Murdoch (1994) and Troje (2002), it was 
found that a frontal-view presentation of the walkers con-
sistently provided better gender recognition results than at 
a side view. 

In Montepare and Zebrowitz-McArthur (1988), gender 
recognition using different age groups of the point-light 
walkers were examined. Child, adolescent, young adult, 
and older adult walkers showed an average recognition rate 
of 55%, 70%, 64%, and 69%, respectively. However, in a 
second experiment with a different group of adults, the 
average recognition rate dropped to 46%. Experiments in 
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Pollick, Lestou, Ryu, and Cho (2002) examined other 
point-light movements, such as knocking, lifting, and wav-
ing, which resulted in chance-level performance (a Neural 
Network demonstrated better performance). An average 
gender recognition rate of 75% was reported in Runeson 
and Frykholm (1983) for complex actions including walk-
ing, sitting, rising, standing on a chair, and jumping. They 
additionally explored the influence of the actor’s natural, 
emphatic, and deceptive gender movement intention, 
which showed that the natural movements yielded the best 
gender recognition rate (86%). Similar actions were exam-
ined in Crawley, Good, Still, and Valenti (2000) using 
young children (4–5 years old), but resulted in unreliable 
gender recognition performance. 

A recent pattern recognition approach for gender rec-
ognition was presented in Troje (2002), where a two-stage 
PCA framework was implemented to decompose male and 
female walking data into an Eigenspace, from which a lin-
ear classifier was used for gender recognition. The data 
consisted of three-dimensional (3D) motion-capture trajec-
tories of 40 walkers (20 females, 20 males). The first PCA 
was applied to each walker to decompose the motion pat-
tern into a posture basis. A walker description vector was 
constructed by concatenating the mean posture, first 4 pos-
ture components, and 4 sinusoidal parameters for model-
ing the periodic nature of the projection coefficients in the 
posture basis. A second PCA was then applied on the 40 
description vectors (one for each walker) to further reduce 
the walker dimensionality. For gender recognition, a linear 
classifier was applied to the projection coefficients of the 
walkers in the second PCA space. The approach yielded a 
recognition rate of 92.5%. 

Style analysis 
In relation to gender recognition, much work in com-

puter vision and computer animation/modeling has been 
devoted to the general modeling of movement styles. 

In computer vision, a Parameterized-HMM was used by 
Wilson and Bobick (1999) to model spatial pointing ges-
tures by adding a global variation parameter in the output 
probabilities of the HMM states. A bilinear model was used 
in Tenenbaum and Freeman (1997) for separating percep-
tual content and style parameters, and was demonstrated 
with extrapolation of fonts to unseen letters and translation 
of faces to novel illuminates. In Davis (2001), an approach 
to discriminate children from adults based on variations in 
relative stride length and stride frequency over various 
walking speeds was presented. Additionally, in Davis and 
Taylor (2002), the regularities in the walking motions for 
several people at different speeds were used to classify typi-
cal from atypical gaits. Morphable models were employed 
in Giese and Poggio (2000) to represent complex motion 
patterns by linear combinations of prototype sequences and 
used for movement analysis and synthesis. In Brand (2001), 
non-rigid objects were modeled from video by using singu-
lar value decomposition (SVD) with constraint and uncer-

tainty factors. Analytical global transformations were em-
ployed in Yacoob and Black (1999) for recognizing atomic 
activities using PCA. A method for recognizing skill-level 
was presented in Yamamoto, Kondo, Yamagiwa, and Ya-
manaka (1998) to determine the ability of skiers by ranking 
properties such as synchronous and smooth motions. 

In computer animation and modeling, a Fourier-based 
approach with basic and additional factors (walk; brisk) was 
employed in Unuma, Anjyo, and Takeuchi (1995) to gen-
erate human motion with different emotional properties 
(e.g., a happy walk). An HMM with entropy minimization 
was used by Brand and Hertzmann (2000) to generate dif-
ferent state-based animation styles. An N-mode factoriza-
tion of motion-capture data for extracting person-specific 
motion signatures was described in Vasilescu (2001) to 
produce animations of people performing novel actions 
based on examples of other activities. SVD was used in Ma-
son, Gomez, and Ebner (2001) to model reach-to-grasp 
hand postures. A movement exaggeration model using 
measurements of the observability and predictability of 
joint angle trajectories was presented in Davis and Kan-
nappan (2002) to warp motions at one effort into increas-
ing efforts using only selected trajectories. An approach 
using PCA to represent animation sequences was presented 
in Alexa and Muller (2000). In Chi, Costa, Zhao, and 
Badler (2000), the EMOTE character animation system 
used the effort and shape components of Laban Movement 
Analysis to describe a parameterization for generating natu-
ral synthetic gestures with different expressive qualities. 

Prior work on expressive three-mode PCA 
We outlined the fundamental three-mode PCA con-

cepts using expressive features for style analysis in Davis et 
al. (Davis, Gao, & Kannappan, 2002; Davis & Gao, 2003a; 
Davis & Gao, 2003b). The method was examined with 
walking style variations caused by carrying load and pace. In 
Davis and Gao (2003a), we additionally conducted a lim-
ited initial experiment on the physical gender difference of 
walkers. In the present work, we present a special case of 
the general three-mode framework for recognizing the gen-
der of point-light walkers. Specifically, we examine physical 
and perceptual recognition contexts for several point-light 
walkers. Also, we present new experiments related to per-
ceptual parameterization of the walkers using perceptual 
classification experiments. 

Our approach to gender recognition is most related to 
the PCA gender classification method of Troje (2002), yet 
there are important differences. First, we use 2D, rather 
than full 3D, trajectories for the experiments. Second, we 
normalize the walking speed and height of the walkers to 
remove these biases on the gender recognition task. Third, 
because our PCA model is based on a single three-mode 
factorization of the posture, time, and gender, our repre-
sentation enables us to embed an expressive weight on each 
point-light trajectory within the PCA representation to 
adapt the estimation of the gender labels to the training 
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data (similar to a neural network approach). Thus our ap-
proach can be easily tuned to different recognition contexts 
(actual vs. perceived gender). 

Theoretically, a similar weighting scheme could be used 
in other approaches. However, with a step-wise factoriza-
tion (Troje, 2002), the walker data are typically rasterized 
and represented with basis vectors and projection coeffi-
cients. We feel that operating the expressive feature ap-
proach on these projection coefficients would be relevant 
only if the projections on the basis vectors capture some 
inherent, meaningful, decomposition of the original data 
(i.e., the decomposition provides meaningful representa-
tional units). Though this is possible, it is not generally 
clear that a PCA basis itself will provide a meaningful do-
main for feature weights when the data for each posture are 
rasterized together. Fourier analysis has a similar concern 
(though low and high frequency components could be im-
portant features, as shown in Unuma et al., 1995), and a 
frequency-based analysis may not be best-suited to non-
periodic actions (e.g., lifting or throwing). In our expressive 
three-mode approach, we assign weights to each trajectory, 
not to each posture basis vector, and thus a more semantic 
and part-wise link to the actual motion is retained. 

Expressive three-mode PCA 
model 

Human movements can be visually described as specific 
body postures changing sequentially over time. Thus, in its 
most basic sense, movements have two visual modes: pos-
ture and time. If we further consider a stylistic component 
associated with the movement, such as the variation in 
walking due to gender, we have an additional third mode 
(one can easily argue for additional modes). In our ap-
proach, we exploit this tri-modal nature of female/male 
walkers (posture, time, and gender) with an efficient three-
mode PCA representation that is suitable to incorporating 
tunable weights on trajectories to drive the recognition 
process to context-based matching criteria. 

The data for multiple stylistic performances of a par-
ticular action can be naturally organized into a 3D cube Z 
(see Figure 1a), with the rows in each frontal plane/matrix 
Zk composed of the point-light trajectories (segmented and 
normalized to a fixed length) for a particular style index k. 
The matrix data for each variation k could alternatively be 
rasterized into a column vector and placed into an ordinary 
two-mode matrix (each column a style example), but this 
simply ignores the underlying three-mode nature of the 
data (posture, time, and style). 

Many times it is preferable to reduce the dimensional-
ity of large data sets for ease of analysis (or recognition) by 
describing the data as linear combinations of a smaller 
number of latent, or hidden, prototypes. PCA and SVD are 
standard methods for achieving this data reduction, and 
have been successfully applied to several two-mode (matrix) 
problems (e.g., Alexa & Muller, 2000; Black, Yacoob, Jep-

son, & Fleet, 1997; Bobick & Davis, 1996; Li, Dettmer, & 
Shah, 1997; Murase & Nayar, 1995; Turk & Pentland, 
1991; Yacoob & Black, 1999). 

Three-mode factorization 
Three-mode factorization (Tucker, 1966) is an exten-

sion of the traditional two-mode PCA/SVD in that it pro-
duces three orthonormal basis sets for a given three-mode 
data set arranged in a 3D cube Z (see Figure 1a). For gen-
der recognition, we consider the style dimension as a binary 
gender mode of FEMALE or MALE. We begin by reducing 
the cube Z to a prototype data cube using two walking se-
quences, matrices fZ  and mZ , that represent the average 
female and average male walking styles. Each prototype is 
constructed by averaging multiple walking examples of each 
gender class. To ensure proper alignment when averaging, 
one walk cycle of each example is extracted (at the same 
walking phase), height-normalized, and time-normalized to 
a specific duration N. Further details of this preprocessing 
stage are presented later. 

With a total of M point-light trajectories per person 
and N frames in the sequence (time-normalized walk cycle), 
each prototype is represented as a trajectory matrix of size 
M × N. We then subtract the prototype mean ( )f m+Z Z / 2  
from the two gender prototype matrices fZ  and mZ  and 
place them into the first and second (last) frontal plane of 
the cube Z  (see Figure 1b). The dimensionality of Z  is 
therefore M × N × 2. 

The three-mode factorization of Z  decomposes it into 
three orthonormal matrices P, T, and G that span the col-
umn (posture), row (time), and slice (gender) dimensions of 
the cube (see Figure 1c). The core C is a matrix that repre-
sents the complex relationships of the components in P, T, 
and G for reconstructing Z . The desired column and row 
spaces can be found using SVD. We outline the technique 
in Appendix A. 
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Figure 1. (a). General three-mode arrangement of stylistic motion 
data. (b). Three-mode arrangement of two gender prototypes. 
(c). Three-mode factorization of gender prototypes. 

The posture basis P is able to represent any body pos-
ture (of point-lights) at any particular time for either gender 
prototype (i.e., column basis for Z ). The time basis T 
represents any temporal trajectory (of any point-light) for 
either gender prototype (i.e., row basis for Z ). Lastly, the 
gender basis G represents the gender-related changes be-
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tween the two prototypes for any posture at any particular 
time (i.e., slice-line basis for Z ). 

Typically, each mode needs only to retain its first few 
components (meeting some modal variance criteria) to cap-
ture most of the fit to Z . As there are only two mean-
subtracted gender prototypes, the normalized gender basis 
is constrained to be T[-1,  1] / 2=G , signifying the female 
( 1/ 2− ) and male (1/ ) prototype sides of the mean.  2

The complete three-mode factorization of Z , in flat-
tened matrix form, can be concisely written as 

T T[ | ]  (f m = ⊗Z Z PC G T ) , (1) i j

where ⊗ is the Kronecker product (Kroonenberg, 1983) 
and [ | ]f mZ Z  is a matrix with the columns of fZ  followed 
by the columns of mZ . The core matrix C can then be 
solved by simply re-arranging Equation 1 as 

T T  [ | ]( )f m=C P Z Z G TT T⊗ , (2) 

where C need not be diagonal, as is required in two-mode 
PCA/SVD. Related methods for solving this three-mode 
factorization can be found in Kroonenberg and Leeuw 
(1980) and Vasilescu and Terzopoulos (2002). 

Three-mode gender estimation 
From Equation 1, each gender prototype ( fZ , mZ ) can 

be reconstructed as 

T
{ , } { , }  f m f mg=Z PC T , (3) 

where { , }f mZ  corresponds to either gender prototype. The 
gender parameter g  signifies the gender with 1/ 2fg = −  
for FEMALE and 1/ 2=mg  for MALE 

T1  
2f
−

=Z PC T  (4) 

T1  
2m =Z PC T . (5) 

We can write Equation 3 as a summation of three-
mode basis elements and isolate the gender parameter from 
the remaining factored terms with 

{ , } { , }
1 1

  
s t

ij f m ip pq f m jq
p q

g
= =

= ∑∑Z P C T  (6) 

              { , }
1 1

s t

f m ip pq
p q

g
= =

 
=

 
∑∑P C Tjq 

 (7) 

              { , }f m ig jα= ⋅ , (8) 

where the indices i, j correspond to the elements in  
the respective posture and time dimensions 
(1 ≤ i ≤ M and 1 ≤ j ≤N). 

To determine the gender for a new walker within this 
framework, we need only to estimate its corresponding 
gender parameter. For this, a minimization of the three-
mode PCA reconstruction error for the new walker can be 
employed. Following Equation 8, the unknown gender pa-
rameter ĝ  for a new walker Y (already mean-subtracted 
with the model) can be estimated by finding the value of ĝ  
that minimizes the sum-of-squared-error (SSE) reconstruc-
tion 

2

1 1
ˆ (

M N

ij ijg α
= =

= − ⋅∑∑ YF � . (9) )

Setting the derivative of  to zero and re-arranging the 
equation, the resulting gender parameter 

F�
ĝ  is given by 

2
ˆ   

ij iji j

iji j

g
α

α

⋅
=
∑ ∑
∑ ∑

Y
, (10) 

where the gender parameter is computed by the normalized 
projection of Y onto the basis. The final gender can be as-
signed by examining the sign of ĝ , choosing FEMALE if it 
is negative and MALE if positive (i.e., selecting the nearest 
gender prototype). 

Expressive three-mode gender estimation 
Gender estimation using Equation 10 could have 

equally been achieved by rasterizing the gender prototype 
data into a MN × 2 matrix (each column is a rasterized 
gender prototype), performing a standard two-mode PCA, 
and estimating the gender parameter for a new walker by 
computing and thresholding its projection coefficient. The 
three-mode formulation (Equation 10), however, enables us 
to easily embed tunable weight factors (on trajectories) to 
influence the estimation of the gender parameter. 

The minimization of Equation 9 seeks a value of the 
gender parameter ĝ  that reduces the reconstruction error 
in a squared-error manner. Hence, any point-light trajecto-
ries having large magnitude differences from the model will 
significantly influence the minimization process (outliers 
are a common problem in SSE minimizations). However, 
only certain trajectories may carry the most expressive and 
consistent information regarding the gender differences 
across several walking examples. Furthermore, the most 
expressive trajectories could have smaller magnitude differ-
ences in comparison to the remaining trajectories, thus at-
tenuating their impact in an SSE gender estimation proc-
ess. What is needed is a method to weight trajectories dif-
ferently to enable the most expressive trajectories to drive 
the estimation process. 

Using the three-mode reconstruction error equation 
(Equation 9), we introduce a weight factor in the range 0–1 
on each of the M point-light trajectories with 

2

1 1
ˆ (

M N

i ij ij
i j

g α
= =

= −∑ ∑ YF� E )⋅ . (11) 
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The new expressive gender parameter estimation is given by 

2
ˆ   

i iji j

i iji j

g
ijα

α

⋅
=
∑ ∑
∑ ∑

YE

E
 (12) 

   2  i ii

i ii j jα

∆
=

∑
∑ ∑

E

E
 (13) 

   , (14)   i ii= ∑ E ∆

ijwhere 1
N

i ijj α=∆ = ⋅∑ Y . As the denominator 2
i ii j jα∑ ∑E

i

iE

 
in Equation 13 is a constant for a given set of factors E , we 
fold this term into the final “expressive weights”  in 
Equation 14. If we set each expressive weight to 

2 )iji j1 ( α∑ ∑  in Equation 14, the resulting gender pa-
rameter estimation reverts to the previous SSE method 
(Equation 10). However, with non-uniform values for , 
the approach is capable of producing other non-SSE gender 
estimations according to a specific recognition context. 

iE

Learning expressive weights 
We present a learning-based method to determine the 

appropriate values of the expressive weights  by minimiz-
ing a second error function that compares the computed 
gender parameters 

iE

ĝ  (using Equation 14) with labels 
( 1 2g = ± ) pre-assigned to K different training examples 

2

1
ˆ  (

K

k k
k

g g
=

= −∑J )  (15) 

   2

1 1
  (

K M

k i ik
k i

g
= =

= − ⋅∆∑ ∑E ) . (16) 

To solve for the expressive weights in Equation 16, we em-
ploy a fast iterative gradient descent algorithm (Burden & 
Faires, 1993) of the form 

( 1)  ( ) ( )i i
i

n n nη ∂
+ = − ⋅

∂
J

E E
E

, (17) 

with the gradients i∂ ∂J E computed over the K training 
examples 

1 1
  - 2 ( )

K M

ik k m mk
i k m

g
= =

∂
= ∆ − ⋅∆

∂
∑ ∑J

E
E

. (18) 

The learning rate η is re-computed at each iteration (via 
interpolation of the error function) (Burden & Faires, 
1993) to yield the best incremental update. 

The expressive weights are initialized to the default SSE 
formulation, where each weight is initially set to 

21 ( )mjm jα∑ ∑ , which therefore guarantees a final solu-
tion (even at a local minima) with a smaller error than pro-

duced with SSE (i.e., with no expressive weights). The 
weights are also confined to be positive (by definition) in 
each iteration. Experiments conducted with random values 
in the locus of the SSE values (E  randomly set between 0 
and 1, and the expressive weights 

i

iE  initialized to 
2(i mm jα∑ ∑E E )mj  showed fairly consistent convergence 

in experiments with our data. Following termination of 
Equation 17, the gender parameter for a walker can be es-
timated with Equation 14 using the newly learned expres-
sive weights. 

The general gradient descent algorithm determines a 
local minimum for a multi-parameter error function by 
searching through the parameter space to find values that 
yield the minimum error. The algorithm evaluates the error 
function with the current parameter estimates and updates 
the parameters by a small amount in the opposite direction 
of the error gradient to reduce the error function. This up-
dating process is repeated until it converges or reaches a 
maximum number of iterations. It is certainly possible to 
use other minimization techniques to estimate the expres-
sive weights in our formulation. If the training set contains 
enough examples (more than the number of expressive 
weights), the error function could in fact be solved linearly. 
However, the matrix inversion step could produce negative 
weights. 

Interpretation of expressive weights 
Our framework offers a method to learn numeric 

weightings of representational units to bias the estimation 
of the gender parameter from a given set of labeled training 
data. In essence, the approach combines PCA and Neural 
Network learning techniques into a single framework. 

In the experiments presented in this work, we employ 
low-level 2D position trajectories as the representational 
units. Those trajectories assigned a zero-valued expressive 
weight can be interpreted as non-expressive gender features 
in the model. For the remaining trajectories with non-zero 
expressive weights, we cannot definitively state that trajec-
tories with larger weights are given more influence in the 
classification task. The magnitude differences between the 
input and reconstructed trajectories directly influence the 
magnitude of the weights during the numerical minimiza-
tion procedure. One possibility to correct this might be to 
first normalize the trajectory data in some manner as to 
remove any effects due to scale across the different trajecto-
ries. 

Therefore, with the current trajectory representation, 
we make no particular claim that the resulting non-zero 
expressive weight magnitudes are indicative of what is being 
used in human perception. However, if a suitable perceptu-
ally-based representation, perhaps using normalized joint-
angles, is employed in the framework, the resulting weight 
magnitudes computed with the approach may potentially 
show high-level correlations indicative to what humans are 
using for discrimination. This will require further investiga-
tion. 
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Walking data 
To conduct the experiments, we employed a set of 20 

female and 20 male motion-capture walking movements 
collected by N. Troje at the BioMotionLab of Ruhr-
University, Bochum, Germany. The participants were 
mostly students and staff in the Psychology Department, 
aged between 20 and 38 years (average age of 26 years). A 
set of 38 retroreflective markers was attached to the body of 
each walker using a standard marker configuration for hu-
man figure motion-capture. Participants were each asked to 
walk on a treadmill and adjust the speed to the most com-
fortable setting. Ten gait cycles were recorded after the par-
ticipant was walking for at least 5 min (the participant was 
not notified when recording was to begin). A Vicon mo-
tion-capture system with 9 high-speed CCD cameras was 
used to capture the 3D marker positions within 1 mm spa-
tial resolution at 120-FPS temporal sampling. 

This motion-capture data was previously used (see 
Troje, 2002), however the data for each person were trans-
formed (using BodyBuilder biomechanical modeling soft-
ware) into a stick-figure skeleton consisting of 15 virtual 3D 
points located approximately at the major joint locations of 
the body. To eliminate any artifacts that may arise when 
computing such skeletons, we instead chose to select most 
of our point-lights directly from the original marker set. We 
first selected 10 markers at the major arm and leg joint lo-
cations. Then we averaged the 4 head markers (left-front, 
right-front, left-rear, right-rear) into a single head point. 
Similarly, the left and right hip markers (left-front, left-rear; 
right-front, right-rear) were averaged on each side (produc-
ing left-hip and right-hip points). The result was a set of 13 
point-lights mostly located on the body surface (except for 
the head and hips). 

To suppress any noise from the motion-capture system, 
we smoothed the trajectories with a fifth-order, zero-phase 
forward-and-reverse lowpass Butterworth filter with cut-off 
at 6 Hz. Each walking sequence was then rotated to have all 
participants facing the same forward direction (positive Z-
axis). The center-of-rotation (root location) for each person 
was selected as the average center position between the hips 
throughout the walking sequence. The angle of rotation 
was computed such that the average root orientation was 
facing directly forward. 

To remove any potential bias due to person height, the 
stature of each person was normalized by scaling the point-
lights with the average length of the person’s left and right 
tibias (distance between knee and ankle markers). Addi-
tionally, one walk cycle was extracted from each sequence 
(at the same walking phase) by detecting cyclic curvature 
peaks in the left-knee trajectory. Each walk cycle was then 
time-normalized to a fixed duration using spline interpola-
tion to remove any bias of walking speed on the gender 
recognition task. Each cycle was time-normalized to N = 50 
frames to avoid under-sampling (longest cycle sequence of 
the walkers was 44 frames at 30 FPS). 

To make a continuously repetitive walk cycle (for the 
perceptual experiments), we used a simple approach that 
removes the discontinuity between the last and first frame 
of the cycle for each trajectory x(t) by distributing the error 
δ = x(1) − x(N) throughout the trajectory as 

( 1)( )  ( ) tx t x t
N

δ−
= + , (19) 

where t denotes the frame number (1 ≤ t ≤ N). The ap-
proach distributes the discontinuity using small shifts 
throughout the trajectory to align the starting and ending 
positions without the loss of high-frequency information. 
This simple, yet effective, method produces seamless walk-
ing cycles without noticeable visual distortion (other Fou-
rier-based techniques could also be employed). 

Lastly, the 3D trajectories were orthographically pro-
jected into 2D at the frontal view. The forward viewing di-
rection was previously found to yield the best gender dis-
crimination rate by human observers (Hirashima, 1999; 
Troje, 2002). The frontal view also avoids the problem of 
estimating the shoulder-hip ratio or center-of-moment (Bar-
clay et al., 1978; Cutting et al., 1978). Example point-light 
images from our dataset for three female and three male 
walkers are shown in Figure 2. 

(a)

(b)  

Figure 2. Point-light images at the frontal view. (a). Three female 
walkers (#2, #8, and #16). (b). Three male walkers (#22, #32, 
and #37). 
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Gender recognition by human 
observers 

Before testing our three-mode approach for gender rec-
ognition, we first examined the capability of human ob-
servers to recognize the gender of our point-light walkers. 
The perceptual classification labels produced from this ex-
periment will also be used to train our expressive three-
mode model in the perceptual recognition context. 

Participants 
Fifteen students (5 female, 10 male) from Ohio State 

University were recruited as participants for the experi-
ment. All English-speaking participants had normal or cor-
rected-to-normal vision. Their ages ranged from 21 to 34 
years (average age of 25 years). Some participants had pre-
viously been exposed to point-light stimuli, but not to the 
displays used in this experiment. 

Methods 
A computer program was implemented to display the 

40 female/male walkers and to collect the observer re-
sponses of the perceived gender of the walkers. Each se-
quence was rendered as black points against an off-white 
background (see Figure 3). 

Because the time-normalized walk cycles (length of  
N = 50 frames) appear abnormally slow if rendered at 30 
FPS, we used a slightly faster rendering speed of 36 FPS 
determined from the longest natural cycle time of the walk-
ers (1.4 s). Each sequence was looped continuously while 
presented to the observer. The height of each point-light 
walker was scaled to 70% of the screen resolution height 
(1280 × 1024 resolution, with 20-in. diagonal viewable 

monitor). The root location of each walker was randomly 
positioned within a small circle at the center of screen (with 
radius 10% of the screen resolution height). These display 
parameters were used to prevent any explicit position or 
size comparison between the walkers. The point-light dis-
play was generated using C++ and OpenGL with anti-
aliasing. Each observer was seated approximately 60 cm 
from the monitor, which corresponded to a visual angle of 
approximately 20 deg for the height of the point-light fig-
ure. 

For each displayed walker sequence, the participant was 
asked to select a gender label using the keyboard, pressing 
the ‘F’ key to select FEMALE or ‘M’ for MALE. To con-
firm/save the choice and load the next stimuli, the partici-
pant was required to press the ‘Enter’ key. The 40 se-
quences were presented in random order for each trial. The 
progress was shown in the bottom-left of the computer dis-
play (though not required for the experiment), and no time 
restriction was enforced. Each walker labeled by the par-
ticipant as FEMALE was assigned a numeric label of –1, and 
each sequence labeled as MALE was assigned +1. Each par-
ticipant was paid $5, and an additional incentive of 50 
cents per correct gender selected after exceeding random-
chance performance was paid at the end of the experiment 
(maximum possible payment of $15). 

To ensure that each participant was able to perceive the 
moving point-lights as a walking person (required before 
determining the gender), we introduced a preview stage 
before the actual experiment. A sample point-light walking 
sequence was shown to each participant and told that it 
contains a person walking on a treadmill with markers at-
tached to the major limbs. The participant must verbally 
confirm the presence of a walking person before beginning 
the experiment (all participants could easily recognize the 
display). As not to bias the gender recognition task, walker 
#21 (male) was selected for the preview, because it resulted 
in an ambiguous gender assignment from an earlier pilot 
study with 7 observers. 

Results 
The average recognition rate for the 40 walking se-

quences across all 15 observers was 69%. The result is sig-
nificantly above chance performance (t(39) = 5.52,  
p < .001). Previous experiments employing a frontal view of 
walkers (as in this experiment) reported rates of 64% 
(Hirashima, 1999) and 76% (Troje, 2002). 

Though the experiments in Troje (2002) were con-
ducted using the same walkers as in this experiment (both 
datasets were derived from the same motion-capture data), 
the difference in recognition rates could potentially be ex-
plained by different stimuli presented to the observers. In 
Troje (2002), biomechanical modeling software was em-
ployed to create a virtual stick-figure skeleton from the full 
marker set. We used 13 point-light trajectories, of which 10 
point-lights were directly chosen from the original marker 
data (the remaining 3 were averaged from other original 
Figure 3. Screen-shot of the computer display used for the gen-
der-recognition task. 
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markers). Additionally, Troje (2002) presented several walk-
ing cycles, whereas we only presented one (looped) walk 
cycle at a fixed speed. 

To examine the individual walker results, we computed 
a gender consistency value for each walker by averaging the 
numerical values (±1) assigned by the 15 observers. A con-
sistency value of –1 corresponds to total agreement of the 
walker as FEMALE, a value of +1 corresponds to total agree-
ment as MALE, and a value near zero corresponds to 
AMBIGUOUS. We present the gender consistencies from 
the perceptual experiment with the 40 point-light walkers 
in Figure 4. Walkers #1-20 are true females, and walkers 
#21-40 are true males. There appears to be a slight bias to-
ward perceived maleness in the walkers. There were three 
walkers (#1, #4, #34) whose gender labels were unani-
mously selected by all the observers. Interestingly, walker #4 
was a female that was labeled as male by all participants. 
This clearly demonstrates the potential differences between 
perceived and actual gender. Several other walkers were still 
difficult to label (with consistency values near zero). 

Previous studies (Barclay et al., 1978; Cutting et al., 
1978) have suggested the shoulder-hip ratio as a factor in-
fluencing gender recognition. We computed this ratio us-
ing the 2D width of the shoulder s and hip h in the first 
image of each walker sequence. We note that there could, 
however, be more discriminative structural information in 
later frames (though it should not change drastically at the 
frontal view). The average shoulder-hip ratio s/h was  
1.71 ±.26 for females and 1.92 ±.14 for males, and were 
significantly different (two-tailed t test: t(38) = 3.14,  
p < .01). The differences in our shoulder-hip ratios with 
previous measurements (Cutting et al., 1978) are likely due 
to the inward placement of the front and back hip markers 
on the body (not at the maximal hip width). The two hip 
point-lights (left, right) were created by averaging the back 
and front hip markers on each side. Therefore the calcu-
lated hip width would be shorter than the actual hip width 
(thus increasing the shoulder-hip ratio). 

The lack of a strong correlation between the shoulder-
hip ratios for the walkers and the gender consistency values 
(r = .34) suggests that this factor alone does not account for 
the perceptual gender choices. We also computed the cen-
ter-of-moment for the walkers, using Cm = s/(s+h). Even 
though significantly different for females and males (two-
tailed t test: t(38) = 3.04, p < .01), its correlation with the 
gender consistency values was also low (r = .34). 

Comparison to static display 
In addition to the dynamic point-light stimuli, we pre-

sented observers with only one frame from each point-light 
sequence to examine the influence of motion for the gen-
der recognition task. We recruited 15 new students (3 fe-
male, 12 male) not involved with the previous experiment 
as participants. Their ages ranged from 20 to 29 years (aver-
age age of 24 years). 
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Figure 4. Gender consistency values for the 40 walking se-
quences (females: #1-20; males: #21-40). 
A total of 40 single-frame point-light images of the female 
and male walkers comprised the stimuli. As the walking 
poses look very similar at the frontal view (as opposed to 
the sideview), we chose to employ only the initial frame in 
the walk cycle rather than multiple static frames (as in 
Kozlowski & Cutting, 1977). We again admit that static 
differences could potentially arise at other frames/poses. 
Examples images are shown in Figure 2. The same com-
puter program (now only displaying a single frame), pre-
view, and compensation method were employed as in the 
previous dynamic experiment. The gender selections were 
collected from the participants and averaged into gender 
consistency values (see Figure 5a). 

As expected, few walkers were strongly identified with 
their true gender. The average recognition rate for the 40 
static images across all 15 observers was 57%, and was 
above chance (t(39) = 2.62, p < .05). Many of the walkers 
were ambiguous to label given one static frame, yet walkers 
#2, #32, and #37 were correctly recognized at 87%, 87%, 
and 93%, respectively. 

In comparison, the overall static and dynamic rates 
were significantly different (two-tailed t test: t(78) = 2.62,  
p < .05), with the static recognition rate almost 10% lower 
than achieved with the dynamic displays. We also calcu-
lated the absolute value of the difference between the static 
and dynamic consistency values (see Figure 5b). A large dif-
ference magnitude close to 2 for a walker indicates a strong 
gender inconsistency between the static and dynamic cases, 
and a value close to 0 indicates that the two stimuli pro-
vided a similar (strong or weak) gender consistency. Inter-
estingly, several walkers (e.g., #7, #10, #15, and #29) had 
fairly strong gender conflictions between the static and dy-
namic cases. Overall, the dynamic stimuli appear to give 
more gender-related information than the single frame case. 
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 5. Static display experimental results. (a). Gender consistency values for the 40 static walking images. (b). Differences between
and dynamic consistency values.  
nder recognition using ex-
ssive three-mode PCA 
e now examine our expressive three-mode PCA 

l for gender recognition with the same 40 fe-
male walker data used in the perceptual experiments. 
emonstrate the learning flexibility of the framework 
ognizing gender based on the actual physical label (is 
e/male) and the perceived label (appears female/male). 

gnizing physical gender 
o compute the optimal three-mode PCA model and 
oid overfitting, we employed a leave-one-out cross-
tion technique. In this method, we simultaneously 
 the percentage modal fit of the three-mode P and T 
sets (posture and time) from 50% – 95% (in 5% in-
nts). For example, an “85% modal fit” means that we 
ulate the top basis vectors in the posture basis P until 

of the variance in the data is captured. We apply the 
criterion for the basis T. The gender basis G remains 
to T1,  1] / 2[- . 
or each percent modal fit of P and T, we constructed 
fferent models, each using 39 training examples by 
g one different example out of the set. For each 
l (39 examples at a particular modal fit), we created 
nder prototypes, computed the three-mode PCA for 

rototypes, and ran the learning algorithm to compute 
xpressive weights (examples labeled with their true 
r). We empirically selected a limit of 1,500 iterations 
e gradient descent learning algorithm as it provided 
ctory convergence of the expressive weights for our 
et (in both recognition contexts). The training error 
e model was computed by examining the sign of the 

computed gender parameter value for each of its 39 labeled 
training examples (–: FEMALE, +: MALE). The testing (vali-
dation) error for the model was similarly computed using 
only the single left-out example. 

For each modal fit, we then computed the average 
training and testing errors of the 40 leave-one-out models. 
The cross-validation training and testing errors at each mo-
dal fit are shown in Figure 6a. To select the optimal modal 
fit for the data, we chose the fit (75%) that corresponded to 
the smallest average testing error (25%). 

We then constructed a single expressive three-mode 
model at this modal fit. First, the prototypes were created 
from the full training set. Next, the basis sets P and T were 
computed at the selected modal fit (75%), and were of di-
mension 26 × 3 and 50 × 3, respectively (the core C was 
therefore of size 3 × 3). The resulting three-mode PCA cap-
tured 98% of the overall data variance in the two gender 
prototypes. The expressive weights for this model were gen-
erated by averaging the 40 sets of expressive weights com-
puted at the selected cross-validation modal fit (75%). We 
show the average expressive weights ±1 SD in Figure 7. 
Some weights were zero, signifying that they were not rele-
vant to the gender assignments. The larger magnitude 
weights appear to have a significant deviation across the 40 
leave-one-out sets, showing the impact of the singular left-
out examples. However, as previously mentioned, it is diffi-
cult to assign any high-level interpretation to the larger mag-
nitude weights. The mapping of the 26 weights to the 
point-lights is shown in Figure 8. 

Results 
To evaluate the resulting expressive three-mode PCA 

model, we first computed the raw (unthresholded) gender 
parameters using Equation 14 for all 40 walkers, and com-
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Figure 6. Cross-validation training and testing errors for different modal fits of physical gender. (a). Expressive model. (b). Non-
expressive SSE model.  

pared the results to the assigned 1 2±  physical gender 
values. The target (training) labels and computed values 
from the expressive model are shown in Figure 9a. 

For comparison, we employed the same cross-validation 
technique on a three-mode PCA model without any expres-
sive weights (i.e., using the default SSE estimation). The 
cross-validation errors are shown in Figure 6b. A constant 
testing error is present, though different examples resulted 
in the errors across the modal fits. In this case, it appears 
that early generalization (at 50% fit) was achieved for the 
SSE model (with a 30% testing error). The unthresholded 
gender parameters produced from the final non-expressive 
SSE model and the target values are shown in Figure 9b. 

The gender estimations with our expressive model ap-
pear much closer to the desired gender values (average dif-
ference = .31) than the alternative SSE estimations (average 
difference = 1.07). Thresholding the gender parameter val-
ues at zero produced a 92.5% classification rate with our 
expressive model, and a much lower 70% classification rate 
for the non-expressive SSE version. Although the testing 
errors during cross-validation for the expressive and SSE 
models were similar (expressive model was slightly better), 
the training errors for the expressive model were signifi-
cantly less than with SSE. Furthermore, we applied a gener-
alized set of expressive weights (averaged from the 40 cross-
validation models at the selected modal fit). Both of these 
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Figure 8. Point-lights [x,y] labeled with expressive weight index. 
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bled the expressive model to achieve a smaller 
 error than with SSE. 

zing perceptual gender 
antage to our framework is that the model can 
ifferent labeling of the same underlying training 

emonstrate this capability, we also trained our 
roduce gender estimations more similar to the 
n results attained from human observers of the 
mployed the gender consistency values from the 
mic perceptual experiment to label the walking 

ach walker in the training set, we assigned a per-
der label of 1/ 2−  (FEMALE) if it had a nega-
 consistency or 1/  (MALE) otherwise. The 
training set resulted in 15 perceived-females (in-
true females) and 25 perceived-males (including 

les). 

2

We then used the same cross-validation technique (over 
multiple modal fits) outlined in the previous section to 
construct the optimal expressive PCA model. In this per-
ceptual context, the two prototypes were constructed using 
the perceived-female and perceived-male classes (not the 
true gender). The average cross-validation training and test-
ing errors for the expressive model at different modal fits 
are shown in Figure 10a. The optimal cross-validation set 
was found at an 80% modal fit (testing error of 28%). 

For the optimal three-mode model, the prototypes were 
computed from all of the perceived-females and perceived-
males. The basis sets P and T (at 80% modal fit) were of 
dimension 26 × 4 and 50 × 4, respectively (the core C was 
therefore of size 4 × 4). The resulting three-mode PCA cap-
tured 98% of the overall data variance in the two gender 
prototypes. The expressive weights were generated by aver-
aging the 40 sets of expressive weights computed at the 
80% cross-validation fit. We show the average weights ±1 
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 Cross-validation training and testing errors for different modal fits of perceptual gender. (a). Expressive model. (b). Non-
 SSE model.  
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SD in Figure 11. As before, some weights are zero, and we 
also see a larger variation in the higher magnitude weights. 
As the training data for the physical and perceptual labels 
are in fact different, we expect the resulting weights to also 
be different. There is an unexplained asymmetry in the 
arms, though this may be mostly due to the variation in the 
cross-validation weights. However, we do not yet have a 
high-level interpretation of the cause for the weight differ-
ences between the two contexts. 
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Results 
The resulting gender parameter estimations for the ex-

pressive model are shown in Figure 12a. For comparison, 
we also computed the optimal SSE model for the percep-
tual data using the cross-validation technique (see Figure 
10b), and show its gender parameter estimations in Figure 
12b. As in the previous physical gender case, our expressive 
model produced gender parameter values much closer to 
the desired perceptual values (average difference = .33, simi-
lar to the physical gender results) than did the alternative 
SSE estimation approach (average difference = .68). 
Thresholding the gender parameter values at zero produced 
a 90% classification rate for our expressive model and 
77.5% for the non-expressive SSE model. The correlation 
of the expressive perceptual gender parameter with the gen-
der consistency values was r = .89 (SSE correlation was r 
=.69). 

Figure 11. Average expressive weights ±1 SD from the cross-
validation set for perceptual gender. 

Consistency weighting 
To account for the gender ambiguity that occurs for 

some walkers (having gender consistency values near zero), 
we can attenuate the influence of those walkers and give 
the remaining walkers with high consistency magnitudes 
more emphasis when learning the expressive weights. Given 
the set of K training examples and their assigned perceptual 
genders kg , we slightly alter the previous matching error 
function (Equation 16) by using their consistency magni-

tudes ωk to bias the minimization procedure to those ex-
amples having more reliable matches across the observers 

2

1 1
 ( )

K M

p k k i
k i

gω
= =

= ⋅ − ⋅∆∑ ∑J ikE . (20) 

The corresponding perceptual gradient is then 
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E
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This new gradient is used as before in the gradient descent 
procedure (Equation 17) to determine the appropriate ex-
pressive weights for the perceptually-labeled walkers. 

With this new approach, the perceptually ambiguous 
walkers will be mostly disregarded when learning the ex-
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Figure 12. Perceptual gender parameter estimation results. (a). Expressive estimation. (b). Non-expressive SSE estimation. (walkers
#1-15: perceived-female; #16-40: perceived-male) 
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pressive weights. Therefore, an error for a highly ambiguous 
walker should not be as equally counted as the other con-
sistently-labeled walkers. We correspondingly modify the 
standard recognition error rate to now be weighted by the 
consistency magnitudes 
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Using the new perceptual gradient function and the 
weighted error calculation in the cross-validation tech-
nique, the single optimal expressive model was computed 
(at a 60% modal fit) and tested on the perceptually-labeled 
walking data. The resulting expressive model produced a 
weighted classification rate of 95.5% for all 40 walkers (the 
corresponding optimal SSE model produced a weighted 
classification rate of 88%). 

Summary and conclusion 
We presented an approach for gender recognition of 

point-light walkers using an expressive three-mode principal 
components framework. The approach initially factors pro-
totype female and male walkers into their three-mode prin-
cipal components to provide individual basis sets for the 
body posture, temporal trajectories, and gender changes. 
The main advantage of this multi-modal basis set is that it 
offers a low-dimensional decomposition of the data suitable 
for incorporating expressive weights on trajectories to bias 
the model estimation of gender. The method automatically 
learns the expressive feature weights from labeled training 
data, and therefore can adapt to different recognition con-
texts for the same underlying data. 

We presented two types of gender labeling of the train-
ing data to learn the values of the expressive weights. Physi-
cal labeling assigns the true physical gender to each walker 
(is female/male). Perceptual labeling assigns genders result-
ing from a perceptual classification task to attain the ob-
served gender (appears female/male). The labeled training 
data are used in a gradient descent-learning algorithm to 
solve for the expressive weight values needed to bias the 
model estimation of gender to the desired training values. 
Instead of matching a new walker to several examples for 
recognition, our expressive model is used to directly com-
pute a gender value/label for the walker. 

Results using 40 walkers (20 female, 20 male) labeled 
with their physical gender and our expressive model 
showed a recognition rate of 92.5%. These results are con-
sistent with the recognition rate reported in Troje (2002) 
using a two-stage PCA and a linear classifier on a similar 
dataset of 40 walkers. We also trained the model using per-
ceptually-based labels for the walkers. We first conducted a 
gender classification experiment using 15 observers of the 
40 walkers. Results showed a 69% classification rate by 
human observers. We averaged the 15 gender selections for 

each walker to form a consistency value, where the thresh-
olded consistency was used to assign the dominant per-
ceived gender label to each walker for training the expres-
sive model. Using the trained expressive model (on the per-
ceptually-labeled data), a recognition rate of 90% was 
achieved. A model trained with consistency-weighted ex-
amples produced a higher 95.5% weighted classification 
rate. The results demonstrate that our approach can suc-
cessfully and automatically adapt to different gender con-
texts (physical and perceptual), and that it can outperform a 
standard non-expressive SSE model (with no expressive 
weights). 

Because gender recognition has been an active research 
domain for several years, we feel our model has merit for 
further analysis in this area. We plan to examine other rep-
resentations (e.g., joint-angles), which may result in learned 
weight values that are highly correlated with higher-level 
movement interpretations. Then our model may help to 
provide insight to which features may be used by human 
observers during the gender classification task. 

Appendix A: Singular value de-
composition 

Singular value decomposition (SVD) (Strang, 1993) can 
be used to factorize any m × n matrix A into 

T

1

1

(colomn space) (singular values)

| | |

| | |
r m

r

m m m n

σ

σ
× ×

= ∑

   
   =    
      

A U V

u u u
1v

rv

(row space)

,

n n×

 
 
 
  

 

where U and V are orthonormal matrices and Σ is diagonal 
with r singular values σ1,…,σr. The columns of U corre-
spond to a column space of A, where any column of A can 
be formed by a linear combination of the columns in U. 
Similarly, the rows of VT correspond to a row space of A, 
where any row in A can be constructed by a linear combi-
nation of the rows in VT. 

The matrices U, V, and Σ can be computed from the 
eigenvectors and eigenvalues of AAT and ATA, as shown by 

T T T T T T T 2

T T T T T T T 2

( )( )

( ) ( )

= ∑ ∑ = ∑ ∑ = ∑

= ∑ ∑ = ∑ ∑ = ∑

AA U V U V U V V U U U

A A U V U V V U U V V V

T

T ,

where U is the orthonormal eigenvector basis of AAT and 
V is the orthonormal eigenvector basis of ATA. The square 
of the singular values σi correspond to the eigenvalues. 

The three-mode factorization of the prototype gender 
data Z  decomposes it into three orthonormal matrices P, 
T, and S that span the column (posture), row (time), and 
slice (gender) dimensions of the cube (see Figure 1c). The 
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desired basis sets can be found with SVD using three dif-
ferent 2D matrix-flattening arrangements of Z  

T T

Posture:  = columnSpace( [  |   ] )

Time:  = columnSpace( [  |   ] )

Gender:  = rowSpace( [  |   ] ),

f m

f m

f m

P Z

T Z

G Z Z

Z

Z  

where T
{ , }f mZ  is the transpose of { , }f mZ , and { , }f mZ  is the 

rasterized column vector of matrix { , }f mZ  (concatenation 
of point-light trajectories for each gender into a single col-
umn vector), and [X | Y] is a matrix with the columns of X 
followed by the columns of Y. Note that no two of the 
three basis sets can be produced within a single two-mode 
(matrix) factorization of Z . 
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