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Abstract. We propose a novel Multiple Instance Learning (MIL) frame-
work to perform target localization from image sequences. The proposed
approach consists of a softmax logistic regression MIL algorithm using
log covariance features to automatically learn the model of a target that
persists across input frames. The approach makes no assumptions about
the target’s motion model and can be used to learn models for mul-
tiple targets present in the scene. The learned target models can also
be updated in an online manner. We demonstrate the validity and use-
fulness of the proposed approach to localize targets in various scenes
using commercial-grade surveillance cameras. We also demonstrate its
applicability to bootstrap conventional tracking systems and show that
automatic initialization using our technique helps to achieve superior
performance.

1 Introduction

Object tracking is one of the most studied problems in the field of computer
vision. Tracking of pedestrians is an end application in itself, or can be used for
collecting trajectories for higher level behavior analysis. Traditional techniques
for following particular targets in surveillance settings which use active PTZ
cameras involve a security operator driving a joystick (to control the PTZ cam-
era) and adjusting it to follow the target of interest. For handing off the task to
an automatic tracker, the operator would have to stop and select the target (e.g.,
with a bounding box) for the tracker to initialize. While on the one hand, learn-
ing the target model from a single frame is not robust, requiring the operator to
click on multiple successive frames is also very impractical. Moreover, due to the
fast and real-time nature of these tasks, such initializations are both unreliable
and require significant training. They also require the ability to control multiple
input devices for driving the camera (joystick) and clicking on the video feed
(mouse). In this situation, an automatic technique to learn target models that
is both robust for tracking and intuitive to operate is needed.

In a typical surveillance setting, an intuitive way for an operator to initialize
a tracker would be to use the joystick to loosely follow the person of interest and
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then have the system automatically learn the intended target, and then continue
tracking the target. Since the system now has a robust model that has been
automatically learned using the target’s persistent appearance features, it can
use this model to reliably track the target in future frames. Towards this end,
we propose an attention-based technique to learn target models using a machine
learning approach. (Note that the attention nature of this method allows the
target to be anywhere in the scene/image and therefore does not assume any
particular motion model on the part of the target). A limitation of supervised
learning is that it requires labeling of the individual instances, which are typically
hard to obtain (this is also the case in our setting, as explained later). Multiple
instance learning (MIL) is a variant of supervised learning where it relaxes the
granularity at which the labels are available. Therefore, in MIL settings, the
instances are grouped into “bags” which may contain any number of instances
and the labeling is done at the bag level. A bag is labeled positive if it contains
at least one positive instance in it. On the other hand, a bag is labeled negative if
it contains all negative instances. Note that positive bags may contain negative
instances.

In our problem formulation, we model images containing the target of interest
as bags, and regions within the images as instances. The MIL framework is
therefore well suited to this task because it is guaranteed that at least one
instance in the bag/image contains the object of interest, and it is much more
efficient (faster and cheaper) to label bags/images instead of individual image
regions. Therefore, we take image patches from areas of motion in the image
(when the camera is not moving) and create a positive bag using all of these
instances. At the same time, we sample image patches from the non-moving areas
and create a negative bag from these instances. (Another option is to collect all
patches from the input image and build a positive bag, and use patches from
a background image of the same/similar region to construct a negative bag.)
By repeating this for every frame, we are guaranteed that every positive bag
contains at least one patch containing the target of interest and at the same
time ensures that the target is absent from all the negative bags. By training
a MIL algorithm based on logistic regression, we learn a target model that can
be used to classify every instance (image patch) from a new incoming frame as
target or not with a certain probability. We then use this probability map over
the image and threshold it to update the model for the target.

2 Related Work

While there has been much work in the areas of pedestrian detection and visual
tracking separately, not much work has been done in automatic localization from
the point of view of initialization of a tracker based on visual attention. Pedes-
trian detection approaches such as [1] are generally view specific and are therefore
unsuitable for our domain since PTZ cameras overlooking a large area can have
a wide range of pedestrian views (from fronto-parallel to top-down). Moreover,
such approaches are not applicable for finding the most persistent pedestrian in
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the scene (the target to be tracked), which is what is required to initialize an
object tracker in our operator-joystick setting. In the area of object tracking,
popular approaches include appearance-based techniques such as Mean-shift [2]
and Covariance tracking [3], and filtering and association-based approaches such
as a Kalman filter [4] and particle filter [5]. All of these approaches require good
target localization and initialization for them to work well, and assume that a
good initial target model is provided.

In the area of Multiple Instance Learning, the original work of [6] proposed
to learn axis-parallel rectangles for modeling target concepts. Since then there
have been various algorithms proposed including Diverse Density (DD) [7], EM-
DD [8], and SVM techniques [9]. More recently, in a comparison study of MIL
algorithms, Multiple instance logistic regression [10] has been shown to be the
state-of-the-art MIL algorithm, especially for image retrieval tasks. Our contri-
bution is an adaptation of such a logistic regression based MIL algorithm based
on the softmax function and a new application problem.

3 Multiple Instance Learning

In order to learn the target model from a sequence of images and localize the
target of interest within a new image, we wish to build a discriminative classifier
which can output the probability p(y = 1|x) indicating the posterior probabil-
ity that the target is present (y = 1) in the image patch x. In a MIL frame-
work, the input data is obtained in the form of positive bags (B+) and neg-
ative bags (B−) containing instances. More formally, the input is presented as
{(X1, y1), (X2, y2), ..., (Xn, yn)} where Xi = {xi1, xi2, ..., xim} denotes bag i con-
taining m instances and has a corresponding bag label yi ∈ {0, 1}. Each instance
xij is a feature vector calculated for an image patch j from bag i. The bag labels
are obtained from the instances in the bags. More specifically, a bag is labeled
positive if it contains at least one positive instance. A bag is labeled negative if
it contains all negative instances.

Using a likelihood formulation, the correct bag classifier/labeler will maxi-
mize the log likelihood of labels over all the bags (given the MIL constraints)

logL =

n∑
i

log p(yi|Xi) (1)

where p(yi|Xi) is the probability of the bag i (given its instances) having label
yi. As we can see, since the above likelihood formulation is expressed in terms of
bag probabilities and what we want is to learn an instance-level classifier (for an
instance/patch x), we will use a combining function to assemble instance-level
probabilities into a bag probability. This is done using the softmax combining
function as follows.

From the definition of positive and negative bags, we can formally express
the notion of bag label in terms of its instance labels as

yi = max
j

(yij) (2)
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which states that the label of a bag is the label of the instance within it which has
the highest label (i.e.,{0, 1}). Notice how this formulation conforms to the defini-
tion of positive and negative bags and encodes the multiple instance assumption.
Here, we incorporate a probabilistic approximation of the max operator called
softmax, in order to combine these instance probabilities in a smoother way, so
as to allow all instances to contribute to the bag label. This softmax function

is defined as: softmax(a1, ..., am) =
m∑
j=1

(aj exp(αaj)) /
m∑
j=1

exp(αaj). α is a con-

stant that controls the weighting within the softmax function such that softmax
calculates mean when α=0 and max when α→∞.

The bag-level probabilities for positive and negative bags are now defined as

p(yi = 1|Xi) = softmax(ti1, ..., tim) , p(yi = 0|Xi) = 1− p(yi = 1|Xi) (3)

where tij = p(yij = 1|xij) are the instance level probabilities being combined
to obtain the bag probabilities p(yi|Xi). Thus, if one of the instances is very
likely to be positive, the nature of the softmax combining function is such that
its estimate of the bag’s “positive-ness” will be very high, since it gives an
exponentially higher weight to such an instance, and consequently the weighted
average of all the instances will also be high. Here, α controls the proportion
of instances in the bag that influence the bag label. Therefore, if one has an
estimate of the proportion of positive to negative instances in the positive bags
(noise-level), one can appropriately tune α to reflect this, and hence learn more
robust models than by simply using the max operator.

Next, to model these instance-level probabilities tij , we employ a logistic
formulation given as

tij = p(yij = 1|xij) =
1

1 + exp(−w · xij)
(4)

where the parameter vector w (to be learned) models the target of interest, so
that the probability p(yij = 1|xij) calculated with Eqn. 4 would be high for
an image patch xij that contains the target, and low for a patch that does not
contain the target.

Now, using Eqns. 4 and 3 in Eqn. 1 along with a regularization term on w,
we can express a maximum likelihood formulation (in terms of the parameter
vector w to be learned) as

ŵ = arg max
w

∑
i∈B+

log


m∑
j=1

tij exp(αtij)

m∑
j=1

exp(αtij)

+
∑
i∈B−

log

1−

m∑
j=1

tij exp(αtij)

m∑
j=1

exp(αtij)

−λ2 wTw

(5)

where the regularization term is obtained by using the following prior on the
parameter vector w,

p(w) ∼ N (0, λ−1I) , λ > 0 (6)
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to give better generalization performance [11]. To optimize Eqn. 5, we use a
gradient-based optimization technique using the BFGS method [12].

The parameter vector ŵ obtained from the optimization algorithm thus rep-
resents the learned target model. Therefore, when presented with a new image,
the probability that an image patch within it (with feature vector x) contains
the learned target can be calculated from Eqn. 4 using ŵ.

4 Image Features and Instance Model

We adopt a variation of covariance matrix features to obtain a feature vector xij
for each image patch instance in our formulation. Covariance features have been
shown to be robust appearance-based descriptors for modeling image regions [3].
The covariance matrix representation CR for a given image patch R of size W×H
in our framework is calculated as

CR =
1

WH

WH∑
k=1

(fk − µR)(fk − µR)T (7)

where fk = [x y r g b Ix Iy] is a 7 dimensional feature vector using a combination
of position, color, and gradient values at each pixel location in the image patch
R, and µR is the mean feature vector within the image patch.

We require a Euclidean distance based feature representation for Eqn. 4
whereas distances between covariance matrices are based on their eigenvalues [3].
Therefore, we use the property from [13] that eigenvalues of matrix logarithm of
a covariance matrix CR are equal to logarithms of eigenvalues of CR. Therefore,
the covariance matrix descriptor can be transformed to a feature vector repre-
sentation by first calculating the matrix logarithm of CR to obtain Cl and then
stringing out the elements of the matrix Cl to obtain a vector Cv [13]. Moreover,
since the matrix logarithm Cl is a symmetric matrix, it is fully specified by its
bottom triangular part. Therefore, the feature vector Cv only needs to have the
bottom triangular part of Cl, with the off-diagonal elements scaled by

√
2 to

compensate for their double presence in the matrix. In our case, the 7x7 dimen-
sional covariance matrix reduces to a 28 dimensional feature vector. We then use
these log covariance-based features to model the instances xij corresponding to
each image patch.

5 Target Localization Algorithm

The first step in our localization approach is to extract image patch instances
from a sequence of images and use them to construct positive and negative
bags. Given an input image sequence such as Fig. 1(a), we first detect regions
of motion in each image by standard frame differencing (with the assumption
that the target is moving). For each image, we then extract image patches from
a reasonably large sample of the pixel locations marked as belonging to the
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motion region (the patch size can be predetermined or multiple sizes/aspect-
ratios can be used). We construct a positive bag for this image using these
instances since it is guaranteed to have at least one instance patch containing
the desired target. Note that with this technique, instances corresponding to
other parts of the scene in motion (trees, cars, noise pixels, etc.) would also be
added, but that is acceptable since a positive bag can contain negative instances.
At the same time, we sample a similarly large number of pixel locations from
the (non-moving) background and extract image patches from these locations to
construct the corresponding negative bag. Notice that this method ensures that
no instance in this bag will contain the target. We similarly repeat this process
for each of the input frames. This way it is guaranteed that at least one instance
corresponding to the desired target is present in each of the positive bags and at
the same time, absent from all the negative bags, thus satisfying our Multiple
Instance assumption.

Once the positive and negative bags are constructed, we train the MIL classi-
fier to learn the target concept by using the aforementioned optimization method.
We initialize the weight parameter vector w uniformly at random between (-1, 1).
The algorithm converges when the maximum change in the weight vector is less
than a fixed small threshold ε.

Online Update: An important aspect of the proposed learning approach is that
the learned target concept can be updated in an online manner with each new
incoming frame instead of having to retrain the classifier using all the positive
and negative bags collected from the beginning. We use the assumption that
the target appearance does not change much with the new frame and hence
would result in only a small change in the target model. Once we receive a
new incoming frame, we create a positive and negative bag using the method
described in Sect. 5 and run the gradient optimization algorithm, but this time
with the weight vector initialized to the previously learned target model. Once
the algorithm converges, we obtain the new weight vector reflecting the updated
target model.

Multiple Targets: Another advantage of the proposed approach is its ability
to learn multiple target concepts (if present across the input bags). Since it could
be the case that more than one target is present across all input frames, there
could potentially be multiple target models to be learned by the algorithm.
Therefore, the proposed approach tests for multiple targets by using the first
learned concept to remove all corresponding target instances from the positive
bags, and then retrains to learn the next strongest concept, and so on for each
remaining target. More specifically, once the algorithm converges and learns the
first target model, it then uses Eqn. 4 with this model for every instance from
every positive bag to calculate its probability of being the target. It then classifies
each instance as positive (target) if this probability lies above a fixed threshold
σ. We then update every positive bag by removing from it all the instances
classified as being positive. This ensures that none of the positive bags contain
even a single instance corresponding to the learned target. It is important that
the threshold σ be picked conservatively so as to eliminate every true positive
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(a) Training

(b) Testing

Fig. 1. (a) Image sequence input to MIL. (b) Probability surfaces overlaid on incoming
frames showing target localization (best viewed in color).

instance, even at the cost of eliminating a few false positives if necessary (we
set σ=0.75). Since all instances corresponding to the first target have now been
removed, re-running the optimization algorithm learns the next strongest target
concept (if such a valid target is present). This process is repeated until all valid
target concepts have been learned. To test whether a valid target concept has
been learned or not, we calculate the log likelihood of the learned model on the
input set of positive and negative bags. An extremely low value of the combined
likelihood over all the bags indicates that the learned model is degenerate and
there was no target concept left to learn.

6 Experiments

In this section, we present various experiments to demonstrate the proposed
approach for target localization, apply it to a unique target detection and auto-
locking system, demonstrate its sufficiency for learning appearance-based models
to bootstrap object tracking systems, and finally, compare its performance with
other manual initialization techniques.

6.1 Automatic Target Localization

Given a sequence of input images, we first constructed a set of positive and nega-
tive bags according to the technique described in Sect. 5 with patch size of 75x25
pixels. We then ran the MIL algorithm to learn a concept corresponding to a
target that was common across all positive bags and absent in each of the neg-
ative bags. The parameters of the learning algorithm were set as α=3, ε=10−5,
and λ=10−2. The validity of the learned target concept was checked by calcu-
lating the likelihood of the learned model across all input bags. Next, for every
new incoming frame, the target model was evaluated against the input image
at every possible location. This results in a probability surface corresponding to
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(a) Training

(b) Testing

Fig. 2. (a) Input image sequence containing 2 valid targets. (b) Probability surfaces
for incoming frames showing unique target detected at a later instant.

the new incoming frame indicating the probability of the target being present at
each particular location. Figure 1(a) shows the sequence of input frames used to
learn a target model. Figure 1(b) shows the probability “heatmap” overlaid on
new input frames, representing the probability surface p(y = 1|x) for each patch
x across the image. As seen in the figure, the target (in blue) present across all
input images was detected and localized by the algorithm. After this, a new pair
of positive and negative bags was created for the new input frame using the on-
line update technique described in Sect. 5. The target model was then updated
using the MIL algorithm and the updated model was used to evaluate the next
incoming frame. This process was repeated with every new frame. Figure 1(b)
shows the results of target localization using model update in the new input
frames. Notice also that the other person (wearing black pants) was not learned
by the algorithm since that person was not present in all of the frames, thus not
satisfying the MIL criterion.

6.2 Auto-locking for Unique Target Detection

A useful feature of the proposed approach with the online update is its ability
to continue updating all the target models (if there are multiple targets present
in the scene satisfying the MIL criterion), and continue this process until a
unique target is detected and localized in the scene. This is possible because the
likelihood evaluation from the optimization algorithm can be used to identify
the number of target models learned. Thus, this feature is useful in a system
which can continuously update multiple target models until only the single most
persistent target remains in the scene and then use that model for active tracking.
We demonstrate this ability here.

As seen in Fig. 2(a), there were 2 targets present in the scene satisfying the
MIL criterion. Therefore, the algorithm learned 2 corresponding target models
and these were then used for localization with the incoming frames as shown in
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Fig. 3. Localization results from two other sequences involving multiple targets.

Fig. 2(b) (note that a probability surface corresponding to each learned model
is obtained separately, but they are shown here overlaid on the same image for
compactness). Further, with each new incoming frame, the target models were
updated online and eventually, when incorporating a frame where one of the
targets is no longer present, the MIL criterion is violated and consequently the
only single remaining target model was updated, as shown in the last two frames
in Fig. 2(b). Even if the other target later re-enters the scene, they will not be
localized, as the MIL criterion requires the target to be persistent across all
frames from the beginning. Figure 3 shows correct localization results from 2
other sequences involving multiple targets and distractors.

6.3 Sufficiency of Learned Models for Tracking

Once a unique target is detected, the next step is to use the probability surface
for localizing the target and build an appearance model that can then be used
for tracking. We present experiments that demonstrate that the target models
learned using the proposed approach can be used with commonly used tracking
methods such as covariance and mean-shift tracking.

We use the probability surface generated by the MIL algorithm and thresh-
old it to extract the extents of the target which can then be used to build an
appearance-based model for tracking. Figure 4(a) shows the probability surface
for a particular input frame. We then picked a threshold of 0.5 on the probability
surface and used this to extract the area of the learned target model. Figure 4(b)
shows the thresholded area of the target corresponding to Fig. 4(a), and the as-
sociated image chips in Fig. 4(c) show the results for various other input frames.
Note that they all roughly correspond to the same area (target’s torso and legs).

We then calculated the width and the height extents of the thresholded
area and fit a bounding box around the region. This bounding box was then
used to learn an appearance-based model of the target and bootstrap differ-
ent trackers. This bounding box (mostly around the target’s torso and legs)
captured the appearance features that remained most persistent across input
frames, as opposed to a larger bounding box around the entire body (includ-
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(a) (b) (c)

Fig. 4. (a) Probability surface. (b) Thresholded surface showing identified target area.
(c) Image chips showing region used to learn appearance model for target tracking.

Target Covariance tracking

Target Mean-shift tracking

Fig. 5. Results from bootstrapping (a) covariance tracker (b) mean-shift tracker using
a model learned from the proposed approach.

ing head, hands, and feet), which could potentially include several background
pixels. We evaluated this approach with both covariance and mean-shift track-
ers. Figure 5(top) shows a few frames from tracking a target using a covariance
tracker, and Fig. 5(bottom) shows the results using the mean-shift tracker. In
both cases, the appearance model learned using the proposed approach is reliable
and sufficient to bootstrap standard object trackers.

6.4 Comparison with Manual Initialization

Using a standard test sequence, we next performed three experiments to compare
the performance of our automatic localization and tracker initialization with
typical manual initialization techniques to demonstrate the applicability of our
approach. In the first experiment, we initialized a covariance tracker by manually
specifying the location of the target and the size of the bounding box around the
target in the first frame. In the second experiment, instead of manually marking
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(a) Manual - 1 frame

(b) Manual - 5 frames

(c) Proposed

Fig. 6. Tracking results for (a) manual initialization with just 1 frame, (b) manual
initialization using 5 frames, and (c) automatic initialization using proposed approach.

the target in only the first frame, we marked its locations in each of the first 5
frames and computed a manifold mean of the covariance matrix representations
from all 5 frames, and then used this model to manually initialize the covariance
tracker. Even though this scenario is unrealistic in practical settings (where one
cannot expect to manually select the target in every frame), we performed this
experiment for a fair comparison with the proposed approach since our automatic
localization uses an initial set of frames. (Note that the covariance tracker used
a model update every frame). The third experiment involved tracking the target
after automatically learning the target model using the proposed approach.

The results of each of the three experiments are shown in Fig. 6. As seen in
Fig. 6(a), the manual initialization with a single frame performs poorly and loses
the target within a few frames (as expected). The second experiment produces
better results since it computes an average model across the 5 frames and con-
sequently the model learned is less noisy. However, even in this case, we can see
that the target is lost after a few frames (see Fig. 6(b)). In the third experiment
(where the target is automatically localized), the target is tracked the longest
(see Fig. 6(c)). The strength of employing a MIL formulation here (as opposed
to a supervised approach) is that the task of identifying the best representation
of the target present in the frame (and one that is also the most persistent across
all frames) is ambiguous, and hence is pushed into the MIL framework. Conse-
quently, our MIL approach outperforms the alternate initialization methods.
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7 Summary and Future Work

We proposed a novel MIL framework to perform target localization from image
sequences in a surveillance setting. The approach consists of a softmax logistic
regression MIL algorithm using log covariance features to automatically learn the
model of a target that is persistent across all input frames. The learned target
model can be updated online and the approach can also be used to learn multiple
targets in the scene (if present). We performed experiments to demonstrate the
validity and usefulness of the proposed approach to localize targets in various
scenes. We also demonstrated the applicability of the approach to bootstrap
conventional tracking systems and showed that automatic initialization using our
technique helps achieve better performance. In future work, we plan to explore
the applicability of this approach to multi-camera systems for learning models
from multiple views of targets.
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