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Abstract. We present a new contour-based background-subtraction technique to extract foreground objects in
widely varying thermal imagery. Statistical background-subtraction is first used to identify local regions-of-interest.
Within each region, input and background gradient information are combined to form a Contour Saliency Map.
After thinning, an A* path-constrained search along watershed boundaries is used to complete and close any broken
contour segments. Lastly, the contour image is flood-filled to produce silhouettes. Results of our approach are
presented for several difficult thermal sequences and compared to alternate approaches. We quantify the results

using manually segmented thermal imagery to demonstrate the robustness of the approach.
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1. Introduction

We present a new background-subtraction technique
to robustly extract foreground objects in thermal video
under different environmental conditions. Thermal
(FLIR) video cameras detect relative differences in the
amount of thermal energy emitted/reflected from ob-
jects in the scene. As long as the thermal properties
of a foreground object are slightly different (higher
or lower) from the background radiation, the corre-
sponding region in a thermal image appears at a con-
trast from the environment. Therefore thermal cameras
can be equally applicable to both day and night sce-
narios, making them a prime candidate for a persis-
tent (24-7) video system for surveillance and moni-
toring. Thermal cameras have been traditionally used
by the military for tasks such as long-range detec-
tion of enemy vehicles and Automatic Target Recog-
nition (ATR). In recent years, thermal cameras have
become increasingly employed for other applications,

including industrial inspection, surveillance, and law
enforcement.

The use of thermal imagery alleviates several classic
computer vision problems such as the presence of shad-
ows (which appear in the thermal domain only when
an object is stationary long enough for the shadow
to cool the background), lack of nighttime visibility,
and sudden illumination changes. However, thermal
imagery has its own unique challenges, including a
lower signal-to-noise ratio, uncalibrated white-black
polarity changes, and the “halo effect” that appears
around very hot or cold objects in imagery produced
by common ferroelectric BST sensors. In Fig. 1 we
show outdoor surveillance images of the same scene
captured with a thermal camera, but taken on different
days (morning and afternoon). The thermal properties
of the people and background are quite different, in-
cluding the change from bright (hot) people to dark
(cool) people in relation to the background. For such
thermal imagery to be used reliably in automatic urban
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Figure 1. Thermal images showing large variation in polarity and intensity.

surveillance, these image variations must be properly
addressed.

Most of the previous strategies for object/person de-
tection in thermal imagery employ ‘“hot-spot” algo-
rithms, relying on the assumption that the object/person
is much hotter than the surrounding environment.
Though this is common in cooler nighttime environ-
ments (or during Winter), it is not always true through-
out the day or across different seasons of the year (as
convincingly shown in Fig. 1). As we will show, stan-
dard background-subtraction, image-differencing, and
hot-spot techniques are by themselves ineffective at ex-
tracting the precise locations and shapes of people in
such diverse imagery.

A prominent characteristic of thermal imagery pro-
duced from uncalibrated ferroelectric BST (chopper)
sensors is the presence of halos around objects having
a high thermal contrast with the background (Hoist,
2000). The halos have the opposite polarity (light/dark)
of the objects they surround. The strength and size of
the halos depend on factors such as the actual tem-
perature differential between the object and the sur-
rounding environment and the contrast/gain setting on
the camera. While this poses the most significant chal-
lenge to existing (and popular) background-subtraction
methodologies, we will show that our method in turn
capitalizes on this unavoidable artifact to improve per-
formance.

It should be noted here that microbolometer thermal
sensors, however, do not produce the haloing effect.
In spite of this advantage, several signal-based factors
make traditional ferroelectric BST sensors more favor-
able (Kummer, 2003). Ferroelectric BST sensors, being
AC-coupled, are better equipped to handle detector-
induced steady-state noise which can have a signifi-
cant negative impact on image quality. Also, they are
capable of resolving greater temperature variations in a
scene than the DC-coupled microbolometers. Further,

microbolometers require to recalibrate the scene at ran-
dom intervals to minimize spatial noise. This can be a
serious drawback to vision-based systems as the video
output freezes momentarily during each recalibration.
Lastly, commercially available microbolometers are
typically half the resolution of ferroelectric BST sen-
sors (with higher resolutions being considerably more
expensive). More detailed comparisons of the two sen-
sors can be found in Kummer (2003), Pandya and Anda
(2004). Due to the aforementioned issues, and that fer-
roelectric BST sensors are still in wide use by military
and law enforcement agencies, algorithms targeted for
use in the thermal domain need to be robust to the image
characteristics of ferroelectric BST sensors.

The image characteristics of thermal halos produced
by ferroelectric BST sensors can be examined using
the intensity profile of a row of pixels sliced through
an image region containing a halo. In Fig. 2(a), we
show image regions containing people, one recorded in
Summer (top), and the other recorded in Winter (bot-
tom). The images were collected from different ther-
mal cameras and at different ranges. Notice the po-
larity changes (white/black) for the people in the two
images. In Fig. 2(b), we show the corresponding back-
ground regions without the people. The row of pixels
to be examined is marked with a solid (Fig. 2(a)) and
dotted (Fig. 2(b)) line and two boundary points (left
and right) of the people have been marked with a circle.
The plots in Fig. 2(c) show the intensity profiles for the
corresponding input and background regions along the
slice. Comparison of the input intensity profiles with
those of the background makes it clear that the input
region slice is brighter/darker around the people due
to the halo, thus making the outer boundary contrast of
the people stronger.

Two key observations can be made about thermal
halos based on these plots: (1) thermal halos fade
smoothly/slowly into the image, and (2) stronger halos
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Figure 2. Characteristics of thermal halos. (a) Input region. (b) Background region. (c) Intensity profiles. (d) Gradient magnitude profiles. (e)
Input-background gradient-difference magnitude profiles. (f) CSM profiles.

cause the gradient magnitude around the boundary of
the object (within the halo) to become stronger. The
input and background intensity profiles also predict the
inability of standard background-subtraction methods
to extract precise silhouette shapes from such thermal
imagery (as the halo would be statistically-different
from the background). Additionally, the image region

shown in the top row of Fig. 2(a) makes it clear that
hot-spot methods are not universally applicable, as the
thermal intensity of the people is much lower (darker)
than the background. Indeed, people do not always ap-
pear uniformly brighter or darker than the environment,
and many times appear multimodal. Based on these ob-
servations, we exploit this normally detrimental halo
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artifact of the sensor by focusing on the salient gra-
dient information which in fact becomes more pro-
nounced in the presence of halos. Furthermore, the
gradient magnitude is invariant to white/black polarity
differences.

Our proposed approach first uses a standard
background-subtraction technique to identify local
regions-of-interest (including the foreground objects
and halos). The input and background gradient
information within each region are then combined as
to highlight only the foreground object boundary. This
boundary is then thinned and thresholded to form con-
tour fragments. An A* search algorithm constrained
to a local watershed segmentation of the region is
then used to complete and close any contour frag-
ments. Finally, the contours are flood-filled to make
silhouettes. As the approach relies on gradients rather
than raw intensity, the method is more stable and ro-
bust across very different environmental conditions, in-
cluding different halo strengths and intensity polarity
switches. We demonstrate the approach across six very
different thermal video sequences recorded from two
different thermal cameras. We also quantitatively com-
pare our results with three other common approaches
using a set of manually segmented thermal images.

The method does not rely on any prior shape mod-
els or motion information, and therefore could be par-
ticularly useful for bootstrapping more sophisticated
tracking techniques. Though our method is a fore-
ground detection approach and not an object recog-
nition technique, the results from our approach could
also be potentially used in a recognition scheme using
silhouettes or contours (as in Davis and Keck (2005)).
Furthermore, the proposed approach is not limited to
ferroelectric BST sensors. Though the method is de-
signed to handle thermal halos, it can be equally ap-
plied to non-halo imagery from other video sensors
such as microbolometers or color CCDs. The effective-
ness of the algorithm on color imagery is demonstrated
in Section 4.2. We show that the method is capable of
removing soft shadows around foreground objects in
color imagery, as soft/diffuse shadows have a response
similar to thermal halos in gradient-space.

The remainder of this paper is described as follows.
We begin with a review of related work (Section 2).
We then describe the main components of the proposed
method (Section 3). Next we present experimental and
comparative results (Section 4). Finally, we conclude
with a summary of the research and discuss future work
(Section 5).

2. Related Work

There exist several approaches to the problem of ob-
ject detection/extraction in video. These methods can
be grouped into two broad classes: template-based de-
tection and background-subtraction. We discuss related
work for each of these frameworks in both color and
thermal imagery.

Regarding template-based methods, of particular in-
terest are those designed for detecting people in video.
The use of a color and texture invariant wavelet tem-
plate, followed by a Support Vector Machine classi-
fier, was proposed in Oren et al. (1997). In Gavrila
(2000), a shape-based method using hierarchical tem-
plates and coarse-to-fine edge matching was used. Mo-
tion cues have also been exploited to identify pedestri-
ans in video. In Cutler and Davis (1999), the period-
icity and symmetry of humans walking were used to
detect and classify people. In Viola et al. (2003), image
differencing was combined with intensity information
to create an AdaBoosted classifier to detect pedestri-
ans. Two simple properties (dispersedness, area) were
used by Lipton et al. (1998) to classify regions selected
from image differencing as people or vehicles. These
template methods must be trained with examples of all
possible targets to be detected, and also do not extract
the precise shape of the detected person (other than the
approach of Gavrila (2000)). Generating accurate sil-
houettes enables the use of shape-based techniques by
higher-level vision modules for tasks such as pose and
activity recognition.

The popular non-template framework, not limited
to the detection of particular shapes (e.g., people),
is background-subtraction. Here “foreground” regions
are identified by comparison of an input image with
a background model. Much research in this area has
focussed on the development of efficient and robust
background models. In the basic statistical approach,
a distribution for each pixel (over time) is modeled as
a single Gaussian (Wren et al., 1997; Haritaoglu et al.,
1998), and then any new pixel not likely to belong to the
distribution is detected as a foreground pixel. A Mix-
ture of Gaussians was proposed in Stauffer and Grim-
son (1999) to better model the complex background
processes of each pixel. The Mixture of Gaussians ap-
proach was also examined in Harville (2002). Other
background-subtraction methods based on nonpara-
metric statistical modeling of the pixel process have
also been proposed. In Elgammal et al. (2000), kernel
density estimation was used to obtain the pixel intensity
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distributions. A variable-bandwidth kernel density es-
timator was proposed in Mittal and Paragios (2004).
Time series analysis of input video is another technique
used to create dynamic background models. Kalman
filters were used in Zhong and Sclaroff (2003), and
an auto-regressive model was used in Monnet at al.
(2003). Weiner filters were employed in the three-stage
(pixel/region/frame) Wallflower approach of Toyama
et al. (1999).

The presence of halos in thermal imagery will
severely impair the performance of each of the above
methods as the halo artifact around foreground objects
is typically much different than the expected back-
ground. Since the halo surrounding an object would
also be detected as part of the foreground, the result
would not provide an accurate localization of the ob-
ject silhouette, when ironically the object shape is most
easily distinguishable to human observers because of
the halo. Some of the above methods (e.g., Haritaoglu
et al., 1998; Gavrila, 2000) have been tested with ther-
mal imagery, but the limited nature of the examples ex-
amined does not provide a comprehensive evaluation.

Many other algorithms focussing specifically on the
thermal domain have been explored. The unifying as-
sumption in most of these methods is the belief that
the objects of interest are warmer than their surround-
ings, and hence appear brighter, as “hot-spots”, in ther-
mal imagery. In Iwasawa et al. (1997), Bhanu and
Han (2002), a thresholded thermal image forms the
first stage of processing after which methods for pose
estimation and gait analysis are explored. In Nanda
and Davis (2002), a simple intensity threshold is em-
ployed and followed by a probabilistic template. A
similar approach using Support Vector Machines is
reported in Xu and Fujimura (2002). The use of the
strong hot-spot assumption can also be found in other
work related to object detection and tracking in ther-
mal imagery (Bhanu and Holben, 1990; Danker and
Rosenfeld, 1981; Yilmaz et al., 2003). The underlying
and limiting hot-spot assumption will be violated in im-
agery recorded at different environmental temperatures
and in most urban environments (see Fig. 1).

The approach presented in this paper is based on
our prior work in Davis and Sharma (2004a,b). The
motivation of that work was to remove the invalid hot-
spot assumption of the other approaches and to deal
directly with the halo and polarity artifacts present
in ferroelectric BST thermal imagery. The approach
used background-subtraction and employed the Con-
tour Saliency Map (CSM) representation to combine

gradient information from the input and background
images to focus on the strong object contours within
halo regions and form silhouettes. In this paper, we
extend the approach and quantitatively examine the
method using several difficult variations of thermal im-
agery. The two-stage color and gradient technique of
(Javed et al., 2002) is the most related to our approach
in that it uses color information to initially detect fore-
ground regions and then employs input-background
gradient-differences (edges) to validate these regions.
However thermal halos surrounding the object (not sep-
arate from the object) would cause difficulties with their
approach.

Our approach employs several new methods to ad-
dress the problem domain. The CSM representation
(Section 3.2) is an original contribution to background-
subtraction. A recent template-based approach to de-
tect pedestrians in thermal imagery Davis and Keck
(2005) was robust mainly due to the use of the CSM
representation in the initial detection stage. The pro-
posed “competitive clustering” method (Section 3.2)
used in our approach to perform the selection of the
most salient contours from the CSM is novel and based
on common characteristics of thermal imagery. Addi-
tionally, our application of the watershed transform for
robust contour completion (Section 3.3) is a novel use
of the technique.

3. Method
3.1. Initial Region Detection

We begin the process by identifying the separate re-
gions in an image that are likely to contain foreground
objects (e.g., people). These regions-of-interest (ROIs),
that include the foreground objects and the surrounding
thermal halo, are obtained using a standard intensity-
based statistical background-subtraction method with
a background mean and variance model at each pixel.
Other statistical approaches to model the background
could also be used, such as Mixture of Gaussians
(Stauffer and Grimson, 1999), but will not be sufficient
to address the halo artifact.

In order to build a proper mean/variance background
model, it is often difficult or infeasible to get a suf-
ficiently long video clip without any foreground ob-
jects appearing in the scene. To overcome this prob-
lem, we first capture N images at a frame rate consider-
ably lower (approximately 3 Hz) than that of the actual
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Figure 3. Contour saliency. (a) ROL (b) Input gradient magnitudes. (c) Input-background gradient-difference magnitudes. (d) CSM.

frame rate of the camera, and create a median image
(Iyneq from the N frames). As foreground objects could
be present in the images, the statistical background
model for each pixel is created by computing weighted
means and variances from the N sampled values

SN wie, ) Li(x,y)
SN wilx, y)
YN wilx,y) - (Li(x, y) — plx, )
oL oS wilx, y)

uix, y) = 9]

o’(x,y) =

2

where the weights w; (x, y) for each pixel location are
used to minimize the effect of outliers (values far from
the median I;,.4(x, y)), which in our case are the pixels
belonging to the foreground objects and halos. The
weights are computed from a Gaussian distribution
centered at Iyeq(x, y)

252

i — 2
w;(x, y) = exp <(L(X, ¥) — Inea(x, ) > )

where we set the standard deviation & = 5.

Once the statistical background model has been con-
structed, we obtain the foreground pixels for any new
input image / using the squared Mahalanobis distance

I(x,y)— pu(x, y)? 72
o(x,y)? 4
0 otherwise

D(x,y) =

For the comparative experiments in this paper we set
T =5(.e.,5SD).

To extract the final ROIs, we apply a 5 x 5 dilation
operator to the raw background-subtracted image D
and employ a connected components algorithm. Any
regions with a size less than approximately 40 pixels are
discarded. A ROI extracted with this process is shown

in Fig. 3(a). Notice the large number of pixels included
in the ROI due to the halo.

3.2.  Contour Detection

‘We next examine each ROl individually in an attempt to
separate the foreground objects from the surrounding
halo by extracting the object contours. From our ear-
lier observations regarding thermal halos (Section 1),
the gradient strengths within the ROI can be used to
identify much of the object boundary.

We introduce a novel method for combining the in-
put and background gradient strengths into a Contour
Saliency Map (CSM) such that only the foreground gra-
dients are preserved. The CSM is computed for each
ROI where the value of each pixel in the CSM repre-
sents the confidence/belief of that pixel belonging to
the boundary of a foreground object.

A CSM is formed by finding the pixel-wise mini-
mum of the normalized input gradient magnitudes and
the normalized input-background gradient-difference
magnitudes within the ROI

CSM
. . (“(I)m Iy)” ”((Ix - BGx)v (]y - BGy))”)
= min s
Max Max

&)

where the normalization factors are the respective max-
imum magnitudes of the input gradients and the input-
background gradient-differences in the ROI. The range
of pixel values in the CSM is [0, 1], with larger values
indicating stronger confidence that a pixel belongs to
the object boundary.

The motivations for the formulation of the CSM are
that (1) large non-object gradient magnitudes in the
input image are suppressed (as they have small input-
background gradient-difference magnitudes), and (2)
large non-object input-background gradient-difference
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magnitudes resulting from the halo are suppressed (as
they have low gradient magnitudes in the input im-
age). Thus, the CSM only preserves the gradients in the
input image that are both strong and significantly dif-
ferent from the background. To illustrate these points,
we show plots of the gradient magnitude profiles for
a slice of the input and background regions in Fig.
2(d), and show the corresponding input-background
gradient-difference magnitude profiles in Fig. 2(e). In
Fig. 2(f), we show the resulting CSM profiles. Notice
that the CSM preserves only those gradients that have
a high response in both Fig. 2(d) and (e). The points
corresponding to the left and right boundaries of the
people are more clearly differentiable in the CSM than
they are in either of intensity, gradient, or gradient-
difference profiles. We show the creation of a CSM for
an entire ROl in Fig. 3. The gradients were calculated
using 7 x 7 Gaussian derivative masks.

In previous work (Davis and Sharma, 2004a), we
suggested to create the CSM by multiplying the
normalized input gradient magnitudes with the nor-
malized input-background gradient-difference magni-
tudes. However we found that the multiplication oper-
ation tends to suppress important details and requires
an additional CSM amplification step to alleviate the
suppression of useful gradient information. The use of
the min operator was determined to give better results
and does not require the amplification step.

Figure4. CSM thinning. (a) CSM. (b) Non-maximum suppression
of input gradient magnitudes. (c) tCSM.

Our next step is to produce a thinned representation
of the CSM, which we call the tCSM. As the CSM
does not represent a true gradient image (but in fact is
a combination of different types of gradients), standard
non-maximum suppression methods that look for local
peaks along gradient directions (as used in the Canny
edge detector) cannot be directly applied. However, by
the composite nature of the CSM, maxima in the CSM
must always co-occur with maxima in the input gradi-
ents. Therefore we can use the non-maximum suppres-
sion results of the input gradients as a thinning mask for
the CSM. In Fig. 4 we show a CSM, the non-maximum
suppression thinning mask (derived from the input gra-
dients in Fig. 3(b)), and the final tCSM computed from
the multiplication of the CSM with the thinning mask.

Having thinned the CSM into the tCSM, we now
need to threshold the tCSM into a binary image to
select the most salient contours. Our goal is to choose
a single threshold that selects the majority of the object
contour(s) while removing the background noise
fragments. To motivate our thresholding approach, we
make the following observations. Object regions, es-
pecially person regions, can be at varying temperature
differentials with the environment. When the thermal
variation within an object is much smaller than the
difference in temperature between the object and the
environment, the object pixels in the ROI are typically
over-saturated and distinctly unimodal (see Figs. 3(a)
and 6(a)). In other words, the object appears uniformly
brighter/darker in the image than the surrounding halo
(of opposite polarity). When the object-environment
temperature difference is not much larger than the
thermal variation within the object, the halo effect is
typically weak and the object pixels in the ROI tend
to be multimodal (see Fig. 5(a)). Different camera
gain settings can also affect the level of saturation or
modalness.

In Davis and Sharma (2004a) we proposed a simple
thresholding approach where each tCSM was clustered

Figure 5. Multimodal contour selection. (a) ROI. (b) tCSM. (c) B;. (d) B3 (selected).
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(a) (b)

Figure 6.  Unimodal contour selection. (a) ROL. (b) tCSM. (c) B, (selected). (d) Bs.

(using K-means) into 3 groups (low, medium, and high
saliency) and thresholded by setting pixels in the lowest
cluster to 0 and the remaining pixels to 1. However, as
our observation regarding the typical nature of ROIs
suggests, the medium cluster may or may not contain
enough object contour pixels to justify its inclusion in
the binary result. Specifically, when the object regions
are unimodal, clustering the tCSM into 2 (rather than
3) groups and discarding the pixels in the lower cluster
could produce a better result. Thus if we could reliably
determine a priori whether the object pixels in a ROI
are unimodal or multimodal, we could then choose the
appropriate number of clusters (2 or 3).

Our approach is to generate two thresholded tCSMs,
one result (B;) using 2 clusters and the other result
(B3) using 3 clusters, and then to evaluate which bi-
nary image is optimal (best satisfying our goal of de-
tecting most of the object contours without including
any background noise). To rank the two binary images,
we formulate a novel quality measurement Q using av-
erage contour length (ACL) and coverage (C). An op-
timally thresholded tCSM should contain mostly long
contours (of the object). If the threshold is lower than
optimal, the presence of background noise, in the form
of small contour fragments, would lower the ACL. Sim-
ilarly, if the threshold were higher than optimal, the
existing long contours would be broken into smaller
fragments and the ACL would be smaller than that of
the optimally thresholded tCSM. An optimally thresh-
olded tCSM would also sufficiently “cover” the ROL.
The average distance of the ROI perimeter pixels to the
closest pixel in the thresholded tCSM gives a quantita-
tive measure of the coverage C of the binary result. The
larger the average distance (from the perimeter pixels),
the poorer the coverage.

Given a tCSM, we generate the two contending bi-
nary images B, and B; (obtained after clustering the
non-zero pixels in the tCSM into 2 and 3 clusters re-
spectively, and setting the pixels in the lowest cluster
to 0 and the remaining pixels to 1). We then measure

the quality Q of B, and Bj3 using

0B) = (1 —a). ( ACL(B;) )
max(ACL(B,), ACL(B3))
+o- <1 - C(B) > (6)
max(C(B,), C(B3))

The binary image that maximizes Q is chosen as the
best thresholded result. Essentially, Q is a weighted
sum of the normalized ACL and coverage values. The
weighting factor « determines the influence of each of
the factors on Q. Empirically, we found that if the ACL
of one of the images is less than half of the other, then
there is little need to rely on C. On the other hand, if the
two ACLs are quite similar, then C should be the most
influential factor. In other words, the weight « should
be a function of the ratio of the two ACLs

_ min(ACL(B,), ACL(B3))
~ max(ACL(B,), ACL(B3))

(N

and, when r > 0.5, a should be ~1, and when
r < 0.5, o should be ~0. We therefore express o non-
linearly as a sigmoid function centered at 0.5

1

T 1t e FC05 ®)

o

where the parameter B controls the sharpness of the
non-linearity (we use 8 = 10).

In Fig. 5(a) we show a ROI with multimodal per-
son pixels (of three people), and in Fig. 5(b) we show
the corresponding tCSM. The competing binary thresh-
olded images B, and Bj are shown in Fig. 5(c) and
Fig. 5(d), respectively. The resulting quality values
(using Eq. 6) for the images are Q(B;) = 0.103 and
Q(B3) = 0.255. Hence, Bs (Fig. 5(d)) with the higher
quality value was correctly selected as the better thresh-
olded result for the tCSM (as expected due to the multi-
modal nature of the people). The dominant factor in de-
termining the quality for this example was the coverage
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since the two ACLs were almost identical. We show a
different ROI with a unimodal person in Fig. 6(a) and
the corresponding tCSM in Fig. 6(b). The competing
binary images (B, and B3) are shown in Figs. 6(c) and
6(d). The resulting quality values are Q(B;) = 0.993
and Q(B3) = 0.104. Thus, as expected due to the uni-
modal nature of the person pixels, B, (Fig. 6(c)) was
selected as the correct thresholded image. In this exam-
ple, the ACL was the dominating factor in the quality
evaluation.

3.3.  Contour Completion and Closing

If the selected binary image (B, or B3) for the thresh-
olded tCSM is guaranteed to have unbroken contours
around the object (with no gaps or fragments), then
a simple flood-fill operation could be used to generate
the desired silhouettes. However, the contours are often
broken and need to be completed (i.e., the contours have
no gaps) and closed (i.e., the contour figure is equiva-
lent to the closure of its interior) before we can apply
the flood-fill operation. Our approach is to first com-
plete any gaps using a new search algorithm to grow
out from each gap endpoint and find another contour
pixel. Next, we ensure that all contours in the figure are
closed. Lastly, the result is flood-filled to produce the
silhouettes. To limit the search space and constrain the
solution to have meaningful path completions/closings,
we make use of the watershed transform.

3.3.1. Watershed Segmentation. The watershed
transform (WT) is a powerful mathematical morphol-
ogy tool for segmenting images by partitioning image
regions with watershed lines (Couprie and Bertrand,
1997; Vincent and Soille, 1991). When computing a
WT, the image is considered as a topological relief
where the elevation is proportional to the pixel val-
ues. The determination of the watershed lines from
this elevation surface can be described in terms of both

(b)

Figure 7. Watershed analysis. (a) ROL. (b) Input gradient magnitude. (c) WT overlaid on ROI. (d) Thresholded tCSM overlaid on WT.

topology (Couprie and Bertrand, 1997) and immersion
simulations (Vincent and Soille, 1991). In terms of
topology, a watershed line is intuitively described as
“a set of points where a drop of water, falling there,
may flow down towards several catchment basins of
the relief” (Couprie and Bertrand, 1997). In relation to
immersion, a hole is pierced at every regional minima
(one in each basin) and then watershed lines are built
as dams to prevent water from mixing between basins
as the surface is lowered into water. We employ the ef-
ficient Vincent and Soille immersion approach (1991)
as implemented in Matlab.

When the WT is applied to a gradient magnitude
image, the resulting watershed lines are found along
the edge ridges, and divide the image into closed and
connected regions/cells (basins). Thus there is a high
degree of overlap between the watershed lines of a
gradient (magnitude) image and the result after non-
maximum suppression. Recall that the thinned binary
mask used on the CSM to create the tCSM was com-
puted from the input gradient image. Hence we can use
the WT of the same input gradient image to provide a
meaningful completion guide to connect any broken
contours in the binary thresholded tCSM. As long as
there exists some information of the object boundaries
in the input gradient image, the WT will produce lines
along these boundaries. An over-segmented result is
typical of the WT, and is normally a source of con-
cern for most algorithms. However, our application of
the WT is not segmentation. We instead employ the
WT as a novel method to limit the search space and
provide a meaningful guide for contour completion. In
such a scenario, an over-segmented result still yields a
much smaller number of paths than all possible paths,
hence providing a limited set of good path candidates
to choose from when closing a gap. Also, due to the
small size of the ROIs (as compared to the much larger
size of the entire image), the cost of computing the WT
for a ROI is fairly minimal. In Fig. 7, we show a ROI,

(d)



170

Davis and Sharma

(b)

Figure 8. Basin merging. (a) Original WT overlaid on ROI. (b)
Merged WT overlaid on ROI.

the corresponding input gradient magnitude, the WT
of the gradient magnitude (overlaid on the ROI), and
the thresholded tCSM overlaid on the WT lines.

Apart from providing limited, yet the most likely,
completion paths for the tCSM, the WT also enables us
to eliminate small, stray contour fragments (barbs) that
may harm the completion/closing routines. To remove
these barbs, we first merge the watershed basins into a
coarser segmentation of the ROI, and then examine the
length of the contour segments in relation to the basin
boundaries.

Our basin merging algorithm uses the Student’s t-
test with a confidence threshold of 99% to determine
whether the pixels for two adjacent basins in the ROI
are similar (merge) or significantly different (do not
merge). Starting from the two most similar basins, pairs
of basins are merged until no two neighboring basins
pass the similarity test. The merged version of the WT
gives us a lower resolution segmentation of the ROL.
We shown an example before and after basin merging
in Fig. 8. Other merge algorithms could also be applied
(Najman and Schmitt, 1996; Lemaréchal and Fjgrtoft,
1998).

We use this coarser resolution WT to validate the
contour segments of the thresholded tCSM to eliminate
any small noisy barbs that might exist. Based on the
merged WT, the thresholded tCSM is partitioned into

(®)

distinct segments that divide pairs of adjacent basins.
A tCSM segment is considered valid only if its length
is at least 50% of the length of the WT border sepa-
rating the two basins. If a segment is deemed invalid,
its pixels are removed from the thresholded tCSM. The
intuition behind the process is that at least half of the
boundary between two neighboring regions must be re-
inforced, otherwise the tCSM pixels on the boundary
are likely to be noise. We show a threhsolded tCSM,
the image overlaid on the merged WT, and the result
after the validation process in Fig. 9. Notice that sev-
eral small fragments are removed after the validation
process. The merged WT is used for only this step (to
validate the contours in the tCSM), and the remaining
completion/closing processes employ the original WT.

3.3.2. Completion and Closing. Our next step is to
attempt to complete any contour gaps using the origi-
nal watershed lines as plausible connection pathways
for the (validated) thresholded tCSM. Each “loose”
endpoint of the contour segments (found using 3 x 3
neighborhood analysis) is forced to grow outward (not
permitted to move along its own contour segment)
along the watershed lines until another contour point
is reached. To find the optimal path, we employ the
A* search algorithm (Russell and Norvig, 2003) that
minimizes the expected cost through the current pixel
location to reach another contour point. The Euclidean
distance from the current pixel location to the location
of remaining thresholded tCSM contour pixels is em-
ployed as the heuristic cost function. Each gap comple-
tion search uses only the original contour pixels (not
including any new path points) so that the order of
the gap completion does not influence the final result.
Again, the valid search paths are restricted to only the
watershed lines.

The contour completion process is very effective in
correctly closing a large proportion of the gaps between

(c)

Figure 9. Contour validation. (a) Thresholded tCSM. (b) Thresholded tCSM overlaid on merged watershed lines. (c) Thresholded tCSM after

contour validation.
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(b)

Figure 10. Contour completion problem scenarios (before anal-
ysis and correction). (a) Incorrect loop-back. (b) False connection
between different people.

contour segments. However, due to it’s simplicity, not
every path that is created produces a reasonable com-
pletion. Two problem scenarios can occur: (1) a path
grows outward but loops around back to the pixel’s own
contour segment (see Fig. 10(a)), and (2) a path forms
between (and connects) two different objects/people
(see Fig. 10(b)).

We first address the initial problem scenario. Let P,
be the path created by joining a contour endpoint to
some other contour pixel. We attempt a new path P,
between the same pair of points, but this time we allow
the path to grow back along its own contour to reach
the destination pixel. If the two paths are equivalent, we
keep P,. If the paths are different, we choose the path
having the maximum support from the tCSM. We first
compute the amount of support for a path by counting
the number of pixels n in the unthresholded tCSM (i.e.,
the thinned CSM) that exist along that path. We use the
unthresholded tCSM to account for any pixels that may
have been incorrectly deleted during the thresholding
and validation process. We then choose between P; and
P using

Inil _ Inol
1 757> 5
P = [Pl | P €))
P, otherise

This method removes the false loop-back in Fig. 10(a).

(b)

The second problem scenario typically happens
when a short contour fragment juts outwards from the
object boundary (which may still occur due to small
basin sizes in spite of the merging process in the prior
validation step). Only those new paths that do not form
a closed loop (as in Fig. 10(b)) are examined in this
step (closed loops are acceptable completions). For a
given path, we first assign to each pixel along the path
the maximum saliency value (within its 3 x 3 neigh-
borhood) from the original CSM. We note that since
each path must start and terminate at a selected con-
tour pixel, the two ends of a path are at a local maxima
in the saliency values. Then the saliency profile of the
entire path is examined. If a distinct valley is observed
in the saliency values, the path is declared invalid. The
presence of a valley indicates that the path was likely
constructed over pixels of low saliency (non-object
contour pixels), and thus the path should be deleted.
The following heuristic is employed to quickly deter-
mine the presence or lack of a valley. Given a list of
saliency values S for a path, the locations (M;, M,) of
the leftmost and rightmost maxima are determined by
seeking inward on both sides from the path endpoints
(the maxima are typically the endpoints). A valley is
deemed not present only if there exists a local maxima
between M; and M, with a value greater than S(M;)
or S(M,), or if M; = M, (for the case of S linearly
increasing or decreasing between the endpoints). The
two incorrect paths in Fig. 10(b) are removed with this
approach.

The contour completion and verification processes
described above are repeated in tandem until no new
paths are found. Lastly, when all gaps are completed,
we perform a final match-consistency check. If end-
point E has grown to some non-endpoint, and another
endpoint E, has grown to E;, we favor the E| — E»
connection and remove the path from E; to the non-
endpoint. We show a (validated) thresholded tCSM in
Fig. 11(a) and the completion result in Fig. 11(b). The

(c) (d)

Figure 11. Contour completion, closing, and flood-filling pipeline. (a) Original thresholded tCSM. (b) Completed contour result (white lines
are new paths). (c) Closed result of (b) (white lines are new paths). (d) Flood-filled silhouettes.
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uncompleted contour in the foot region of the mid-
dle person was due to the verification step where an
alternate path had more tCSM support. This contour
segment will be addressed in the following closing
operation.

In the final stage, we ensure that every contour in
the image is part of a closed loop (required for flood-
filling). We consider any “loose” contour end fully
contained in the interior of a closed loop as part of
the loop, and thus that endpoint does not need to be
closed (that contour fragment could be removed). In
geometric terms, our goal is a binary contour image
that is equivalent to the closure of its interior. First, all
those contours not part of a closed loop are identified
(by region growing along the contours). Either a con-
tour is part of a closed loop or it connects other closed
loops. A contour could additionally have an external
“loose” end (not connected to another loop/contour),
as seen in the foot region of the middle person in
Fig. 11(b).

Given an un-closed contour C, the set of closed con-
tour loops (L) connected by C are identified. Two loops,
L, and L,, are chosen at random from L, and we select
the points p; and p, at which the Euclidean distance
between L and L, is the least (p; and p, may not be
unique, and all pairs could be examined if desired). To
close the region, we require a path connecting p; and
P2 other than the contour C. To find the solution that
creates the minimum number of new contour pixels on
the watershed lines, we give no penalty (step cost) in
the A* algorithm for moving along existing contour
pixels on the watershed (allowing a “free glide” along
existing contour pixels).

In Fig. 12(a) we present an example of a typical
scenario, where the contour C is shown in gray, the
loops L and L; connected by C are shown in white,
and the points, p; and p,, are circled. Our approach
is to trace two paths, one from p; to p, and the other
from p; to pj, using the A* search strategy along the

watershed lines. The two paths may be different due
to the “free glide” allowed along existing contours. To
ensure that the new paths are distinct from C, we ignore
and block off the pixels of C thatare closestto L; and L,
during the A* search (marked dark gray in Fig. 12(a)).
We choose the path that maximizes the interior area of
the figure. In the unlikely situation when no possible
path exists between p; and p, (no watershed path), we
default to a direct straight-line closing.

In the alternate case when C has loose/open ends, one
of them is chosen at random as the starting point for
the A* search, and all pixels belonging to the loops in L
are considered valid destination points. In this case, we
ignore all pixels on C within a 3 x 3 neighborhood of
the starting point to ensure that the new path is distinct
from C.

The process of contour closing is repeated until no
new pixels are added to the image between successive
iterations. We show example closing results in Figs.
11(c) and 12(b). After the completion and closing pro-
cedures, a simple flood-fill operation is employed to
create the silhouettes. We present the final flood-filled
silhouettes for the closing result of Figs. 11(c) in 11(d).

4. Experiments

To examine our contour-based background-subtraction
approach, we tested the method with six challeng-
ing thermal video sequences recorded at very differ-
ent environmental conditions. Quantitative results are
provided comparing our method with three other ap-
proaches using a subset of images with manually la-
beled person regions. We also show the feasibility of
our results for tracking using a blob correspondence
and tracking approach over multiple frames in a diffi-
cult video sequence. Lastly, we examine the approach
for other non-person object classes and demonstrate
the applicability of our approach to color imagery.

(b)

Figure 12. Contour closing. (a) Open contour connecting two loops. (b) Examples of closing mechanism (paths shown in white).
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2

Figure 13. Difficult ROIs. (a) Deletion of body regions. (b) Joining multiple people. (c) Silhouette extension into the background.

The thermal dataset was recorded on the campus
of Ohio State University in different seasons (Winter,
Summer) showing pedestrians at various times-of-day
(morning, afternoon, evening). The number of frames
in each sequence was Sequence-1:297, Sequence-
2:314, Sequence-3:1466, Sequence-4:500, Sequence-
5:1000, and Sequence-6:1001. Three sequences (1-3)
were recorded from low vantage points (3- and 4-story
elevations) and three sequences (4—6) were recorded
from the roof of an 8-story building. The sequences
were captured using two different Raytheon ferroelec-
tric BST sensor cores (300D, 250D) with a sensor ar-
ray size of 320 x 240. The sizes of the input sequences
processed were half-resolution at either 320 x 240 or
360 x 240 (depending on the NTSC or DV recording
source). Example images from this dataset are shown
in Fig. 14.

To demonstrate the generality and applicability of
our approach, we extracted silhouettes from each video
sequence with our proposed method using the same pa-
rameter/threshold settings for all sequences (no in-
dividual parameter tuning for each sequence). To give
flexibility to a human operator (e.g., for human-in-the-
loop surveillance monitoring) to select/show only the
most confident detections, we weighted each resulting
silhouette in the image with a contrast value C calcu-
lated from the ratio of the maximum input-background
intensity difference within the silhouette region to the
full intensity range of the background image BG

Clsil) = | max(I(sil)) — ma).i(BG(sil))l (10)
max(BG) — min(BG)

where sil represents a particular silhouette region de-
tected in the input image /. A final user-selected thresh-
old on C could easily be used to remove any minimal-
contrast (noise) regions.

Our results showing the contrast-weighted silhou-
ettes (using Eq. 10) for the images in Fig. 14 are shown
in Fig. 15. The results demonstrate the overall ability of

our algorithm to extract silhouettes in very different im-
agery. Note that even though small ROIs (<40 pixels)
are removed, small valid-sized ROIs that do not con-
tain a foreground object (person) may result in small
silhouette regions (of noise). However, these regions
typically have a low contrast value and could be easily
removed using a threshold on C.

For Sequence-1, the algorithm was able to detect
considerable portions of the people despite the very
low person-background thermal differences and low
gradients. Additionally, a small animal in the top-right
corner was detected in several images. In spite of the
thermal similarity of the cross-walk and people in
Sequence-2, the silhouettes were extracted and sepa-
rated quite well. The small fragmented silhouettes de-
tected in the top-left corner of Sequence-3 were due to
the people being partially occluded by tree branches.
The people in Sequence-4 through Sequence-6 were far
from the camera and at various thermal contrasts with
the environment, but their silhouettes were detected
reasonably well. In several of the images for different
sequences, the approach was able to successfully dis-
tinguish multiple people in close proximity (within the
same ROI).

There are three general problems that can occur
that deserve mentioning. First, strong thermal simi-
larity between regions of the foreground object and
the background can result in portions of the object be-
ing deleted, as shown in Fig. 13(a). Second, if objects
in the ROI are in very close proximity, foreground-
background similarity can result in incorrect joining of
the silhouettes. This case is shown in Fig. 13(b). Lastly,
when certain boundaries of the foreground objects have
low saliency, the silhouette can be extended into the
background region. As shown in Fig. 13(c), the ther-
mal intensity of the people is similar to the background
cross-walk on the pavement and hence the low contour
saliency at the overlapping pixels resulted in a silhou-
ette with the leftmost foot region extending slightly into
the background. Since all three difficulties arise due to
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Sequence-1
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Sequence-5
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Figure 14. Example images from the thermal imagery dataset.

insufficient contrast between the foreground and back-
ground in the ROI, most other intensity-based (ther-
mal/grayscale) methods would have similar problems.

4.1. Quantitative Comparison

In order to quantitatively measure the performance of
the detection results (and to compare with other ap-
proaches), we collected a subset of 30 images from the
dataset (5 images spanning each of the 6 sequences) and
manually segmented the person regions. The selected
images are shown in Fig. 14. Five people familiar with
thermal imagery were independently asked to hand-

draw silhouettes on the people (marked a priori with a
bounding boxes) appearing in each of the 30 images.
The instructions were as follows:

“In each of the following images, boxes have been
drawn around regions containing people. Using the
‘pencil’ tool in Adobe Photoshop, mark all regions
belonging to the people within each box. Consider
all clothing accessories (e.g., hats) and other carried
objects (e.g., backpacks) as belonging to the person
region. Regions belonging to a single person should
not be disconnected. You may zoom infout of the
image as needed.”
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Sequence-|

Sequence-2

Sequence-3

Sequence-4

Sequence-5

Sequence-6

Figure 15. Detection results (contrast-weighted silhouettes) for example images shown in Fig. 14.

For each of the 30 images, the median image of the
5 manually drawn silhouette images was computed.
The 30 median silhouette images were used for algo-
rithm evaluation and comparison. Six of the median
silhouette images (one from each sequence) are shown
in Fig. 16.

Using the manually segmented images, we com-
pared the results of our algorithm with three alternate
methods: statistical background-subtraction, image-
differencing, and hot-spot detection. These simple ex-
traction/detection approaches are commonly used in
both color and thermal imagery (e.g., Wren et al., 1997;

Iwasawa et al., 1997; Bhanu and Han, 2002). Statis-
tical background-subtraction (BS) involves threshold-
ing the Mahalanobis distance of an input image to
the mean/variance background model at each pixel.
We in fact use this method as our initial stage to de-
tect the ROIs. Image differencing (ID) thresholds the
absolute difference of an input image with a back-
ground image (usually a mean or median image). Hot-
spot detection (HD), used specifically for thermal im-
agery, directly compares an input thermal image with a
threshold, with the expectation that the object/person is
hotter than the environment. The background models
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Figure 16. Examples of manually segmented silhouettes for images taken from the original dataset of 6 sequences.

Proposed method

BS

Figure 17. Visual comparison of detection results of the four algorithms across different images from Fig. 16.

for BS, ID, and our approach were computed with the
technique described in Section 3.1 using the entire du-
ration for each sequence. After thresholding in each
of the alternate methods, a 5 x 5 dilation filter was
employed, and regions less than approximately 40 pix-
els were removed (as used in our approach to detect
the ROIs). No erosion filter was applied in any of the
methods.

4.1.1. Comparison 1. To quantitatively compare the
results of our algorithm with the three alternate ap-
proaches, we examined Sensitivity and Positive Pre-
dictive Value (PPV) measurements using the manually
segmented images as ground truth. Sensitivity refers to
the fraction of person pixels that are correctly detected
by the algorithm, while PPV represents the fraction of

detections that are in fact person pixels. To choose the
best threshold for each of the methods, the relevant al-
gorithm threshold was adjusted over a large range and
the threshold yielding the largest sum of the Sensitiv-
ity and PPV over all of the 30 images was selected
(we want both Sensitivity and PPV to be large). For
our algorithm, only the final contrast threshold (C) was
adjusted (the remaining parameters were fixed for all
sequences).

We show the silhouette results obtained by each of
the algorithms on representative images (from the set
of 30) in Fig. 17. The Sensitivity and PPV results for the
30 images are shown in Table 1. A favorable algorithm
should attain high values (close to 1) for both Sensi-
tivity and PPV (i.e., the best method should achieve
a high detection rate with low false positives). Due to
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Table 1. Comparison of detection results using Sensitivity (S) and Positive Predictive Value (PPV).
Method Sequence-1  Sequence-2  Sequence-3  Sequence-4  Sequence-5  Sequence-6  Average
Proposed S 0.662 0.958 0.943 0.822 0.708 0.677 0.793
PPV 0.973 0.928 0.952 0.960 0.948 0.855 0.936
BS S 0.905 1.000 1.000 0.949 0.838 0.803 0.916
PPV 0.702 0.278 0.463 0.614 0.698 0.644 0.567
ID S 0.861 0.998 0.999 0.938 0.834 0.776 0.901
PPV 0.733 0.377 0.544 0.634 0.697 0.648 0.606
HS S 0.889 — 0.994 0.990 0.921 — 0.949
PPV 0.034 - 0.107 0.127 0.585 — 0.213
Table 2.  Average distance of non-person pixels detected (false positives) to manual silhouette shapes.
Method Sequence-1  Sequence-2  Sequence-3  Sequence-4  Sequence-5  Sequence-6  Average
Proposed  Mean 1.026 1.064 1.012 1.088 1.063 1.710 1.1605
SD 0.130 0.235 0.070 0.326 0.283 1.242
BS Mean 15919 6.269 4.346 1.403 1.326 1.522 5.1308
SD 44.576 3.895 9.451 0.505 0.462 0.799
ID Mean 15.818 4.434 2.771 1.349 1.325 1.511 4.5347
SD 44.269 2.893 2.554 0.466 0.463 0.799

the presence of halos in sequences 2—4, the Sensitiv-
ity of BS and ID were nearly 1 (the silhouettes covered
much more than the person region), but the correspond-
ing PPV rates were poor (<.64). The HS approach was
only applicable to the images from sequences 1, 3, 4,
and 5 where the person generally was brighter than the
background. This fact clearly renounces HS as a per-
sistent method. The valid HS results had Sensitivity
values near 1, but had extremely low PPV rates (most
near .1). Our approach performed best when the halos
are the most prominent (sequences 2—4). For these se-
quences, our algorithm had very high Sensitivity and
PPV. In sequences 1, 5, and 6, our approach did not ex-
tract as much of the person as did the other algorithms
(as shown by the lower Sensitivity values). However
we were able to detect nearly 70% of the desired sil-
houette mass while maintaining a higher PPV than the
competing algorithms. Overall, the average results in
the final column of the table demonstrate that our ap-
proach provides the best combination of the Sensitivity
and PPV rates.

4.1.2. Comparison 2. Our next experiment evaluated
how closely the detection results of each algorithm
matched the manually segmented silhouettes. For a per-
fect match, the detection results should be completely

contained within the manually segmented silhouettes,
and every point on the silhouettes should have been de-
tected. We computed the mean and standard deviation
(SD) of the closest distances of the non-person pixels
detected (false positives) to the corresponding manu-
ally segmented silhouettes for each method. Table 2
shows the values obtained from our algorithm, BS, and
ID using the 30 test images. The HS approach was not
evaluated as it performed too poorly in the previous
experiment to be considered a viable algorithm.

In nearly all of the sequences, our method had an av-
erage distance of about 1 pixel. The other two methods
were in the range of 1-16 pixels. The unusually high
mean distances for BS and ID in Sequence-1 were due
to a small animal detected in the top-right corner in the
scene. Though this animal was initially detected by our
algorithm, it was assigned a very small contrast value
and was automatically thresholded out of the final re-
sults.

4.1.3. Comparison 3. 'We also need to measure how
well the detected silhouette pixels “cover” the man-
ual silhouettes. We computed the mean and standard
deviation of the closest distances of the missed pixels
(false negatives) to the correctly detected pixels (true
positives). Table 3 shows these values for the three
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Table 3. Average distance of undetected person pixels (false negatives) to detected person pixels (true positives).

Method Sequence-1  Sequence-2  Sequence-3  Sequence-4  Sequence-5  Sequence-6  Average
Proposed  Mean 2.695 1.040 1.308 4.443 2.213 9.957 3.6093
SD 2.747 0.185 0.639 5.038 1.551 19.851
BS Mean 1.873 1.000 1.000 6.968 1.875 14.360 4.5127
SD 1.198 0.000 0.000 4.991 1.090 24.280
ID Mean 2.334 1.000 1.143 6.664 1.974 13.931 4.5077
SD 1.869 0.000 0.378 5.233 1.184 22.798
algorithms being compared. A high mean and standard 0.9
deviation implies that the detected person regions are 0.04} — ]
widely fragmented. - ’ C |
In Table 3, the mean distance values for sequences 1
and 5 are higher for our approach than for the other al- 09y 1
gorithms. This is consistent with the lower Sensitivity _ 088f 1
values obtained by our algorithm for those sequences. & 0.6l |
However, the mean values of BS and ID are only
marginally less than ours. The results of our algorithm 0847 |
could be further improved by using shape informa- 0.82t
tion during the contour completion/closing stage. Se- o8l ]
quences 2 and 3 have very low mean values for all
the algorithms, showing that the detection results in 0782 022 o024 1Se?{«.;2i?ivny 028 03 0.32

all of the approaches adequately fill out the manually
segmented silhouettes. Furthermore our algorithm per-
forms much better than the competing algorithms in
sequences 4 and 6. The unusually high mean values for
Sequence-6 are because large parts of a person region
in one image did not pass the corresponding threshold
in any of the approaches.

To truly evaluate and compare the detection results
for the different algorithms, we must examine the two
distance tables together (Tables 2 and 3). The last col-
umn in the tables show that the silhouettes extracted
by our algorithm match the manual silhouettes better
on average than those generated by the alternate ap-
proaches.

4.2. Extensions

We examined the effect of different contrast thresh-
olds (C) on the quality of our results. The trade-off
between PPV and Sensitivity for different thresholds
on C (equally spaced between 0 and 0.55) are shown
in Fig. 18, where PPV is plotted on the y-axis, and (1-
Sensitivity) is plotted on the x-axis. As expected, as the
threshold on C is raised, the PPV increases and the Sen-
sitivity decreases. The range of thresholds that yield the
best results can easily be determined from the figure.

Figure 18. Trade-off between Sensitivity and PPV for different
contrast thresholds C. The threshold used in the previous experiments
is circled.

The contrast threshold used in the above experiments
is marked in the figure.

One of the main drawbacks of existing background-
subtraction methodologies (BS, ID) is that detection
results depend heavily on the chosen threshold values.
While our approach also utilizes background-
subtraction as an initial stage of processing, the final
detection results are quite robust to different threshold

Table 4. Quality of detection re-
sults with different background-
subtraction thresholds T (Eq. (4)).

T Sensitivity PPV
5 0.793 0.936
6 0.776 0.944
7 0.772 0.941
8 0.752 0.946
9 0.742 0.949
10 0.711 0.948
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Figure 19. Results of blob-level tracking for Sequence-1.

R

(a) (b)

(d)

©

Figure 20. Extraction of non-person object classes. (a) ROI of dog and person. (b) Final silhouettes. (c) ROI of vehicle. (d) Final silhouette.

values. In Table 4 we show the best Sensitivity and PPV
measures (determined from multiple contrast C values)
obtained by our algorithm on the set of 30 images for
different values of the initial background-subtraction
threshold 7 in Eq. (4). As the Sensitivity and PPV
numbers indicate, our algorithm performs consistently
well over a fairly wide range of background-subtraction
thresholds.

To further demonstrate the usability of our detec-
tion results, we tested a blob-level tracking method
with one of our more fragmented silhouette sequences
(Sequence-1). The blob tracker is based on the work
of Masoud and Papanikolopoulos (2001), which uses
the overlap-area of blobs in successive frames to create
an association graph for consistently tracking people
even when blobs split and/or merge. The tracking was
manually initialized by identifying the blobs belong-
ing to each person in the first image of the sequence.
The three people in Sequence-1 were correctly iden-
tified and tracked throughout the entire sequence. Im-
ages from the tracking result are shown in Fig. 19 (we
did not track the infrequent appearance of the animal in
the upper-right corner). As we can see from the images,
even though the detected blobs are fragmented, they can
still be consistently grouped and tracked over time.

Although we evaluated the performance of our al-
gorithm for foreground regions of people, the algo-
rithm can be used to extract other object classes as
well. In Fig. 20 we show the silhouettes extracted for
two very different object classes. Figure 20(a) shows
a ROI containing a person leading a dog on a leash,
and Fig. 20(b) shows the corresponding silhouettes.

(c)

Figure 21. Detection results in color imagery. (a) Input ROI. (b)
CSM. (c) Final silhouette. (d) Background-subtraction result.

(b) (d)

As can be seen, the completion strategy is able to
generate well-separated and reasonably shaped silhou-
ettes of the person and the dog. In Fig. 20(c) we
show a ROI containing a vehicle and in Fig. 20(d)
we present the extracted silhouette. We note that the
completion strategy could conceivably employ heuris-
tics to bias the method toward specific types of fore-
ground objects (if desired). For example, to better seg-
ment vehicles from the background (e.g., in Fig. 20(c)),
the contour completion phase could be limited to the
use of longer straight lines and T-junctions for the
connections.

Though our approach was motivated by the presence
of halos in thermal imagery produced by ferroelectric
BST sensors, the method is also applicable to the color
domain. In Fig. 21 we show results obtained from im-
ages recorded using a standard CCD color camera. The
color-space was first converted from RGB to YCbCr,
and only the intensity component (¥) was processed.
Figure 21(a) shows an example ROI of a person. Note
that the ROl includes a soft diffused shadow cast by the
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person. In Fig. 21(b) we show the corresponding CSM
and Fig. 21(c) shows the final silhouette extracted with
our approach. We used the same parameters/thresholds
in our algorithm for color imagery as we did for the
experiments on thermal imagery. We see that our ap-
proach is quite applicable to the visible domain. As a
comparison, we also show the results obtained from
standard background-subtraction (BS) in Fig. 21(d).
The background-subtraction threshold was fine-tuned
over a number of images to ensure that all person
regions were detected while minimizing the detection
of non-person regions (the resulting threshold was 15
SD). Comparing Fig. 21(c) and (d), we see that our
gradient-based approach is capable of eliminating soft
diffused shadows in color imagery, which are incor-
rectly detected by traditional background-subtraction
(which would require an additional shadow-removal
step).

The frame-rate of the proposed method depends
considerably on the number of ROIs (foreground
objects) in the images. The most computationally-
intensive components of the algorithm, beyond the ini-
tial background-subtraction process, are the search and
validation methods of the contour completion and clos-
ing procedures. Thus the number of ROIs and the num-
ber of objects within each ROI (and their modality) will
directly influence the amount of time spent in this stage
of the algorithm. The watershed transform (Vincent and
Soille, 1991) can also be costly to compute, but as it is
only applied in small ROIs (rather than the entire im-
age), it does not significantly contribute to the overall
processing time. Using un-optimized Matlab code on
a 2.8 GHz Pentium 4 computer, we experienced typ-
ical processing times of .97 to 4.79 seconds per ROI
depending on the complexity of the ROI (number of
people, modality).

5. Summary

We presented a new contour-based background-
subtraction method to extract foreground objects in
thermal imagery over a wide range of environmental
conditions (including day/night and Winter/Summer
scenarios). Our approach was designed to handle
the problems typically associated with thermal im-
agery produced by common ferroelectric BST sen-
sors such as halo artifacts and uncalibrated polar-
ity switches. These problems typically limit the ap-
plicability of standard object extraction/detection al-
gorithms, such as statistical background-subtraction,

image-differencing, and hot-spot detection, to only cer-
tain types of thermal imagery.

Our approach first uses statistical background-
subtraction to identify local regions-of-interest con-
taining the foreground object and the surrounding halo.
The input and background gradient information within
each region are then combined into our novel Con-
tour Saliency Map (CSM) representation. The CSM
is thinned using a non-maximum suppression mask
of the input gradients. The most salient contours are
then selected using a new thresholding strategy based
on competitive clustering. Any broken contour frag-
ments are completed and closed using a new watershed-
constrained A* search strategy. The final contours are
then flood-filled to produce silhouettes. Lastly, a con-
trast value is assigned to each silhouette to enable a
final selection threshold.

Experiments with our method and six challeng-
ing thermal video sequences of pedestrians recorded
at very different environmental conditions showed
promising results. We demonstrated the generality of
the approach using a single set of parameters/thresholds
across the dataset. A manually segmented subset of 30
images was used to compare the results of our algo-
rithm with statistical background-subtraction, image-
differencing, and hot-spot detection. Quantitative re-
sults using Sensitivity, Positive Predictive Value, and
false positive/negative distances demonstrated the en-
hanced performance of our approach over the other
methods. The detected person pixels were found to
coincide fairly well with the manually segmented sil-
houettes. Our approach was more robust than the
other methods across different environmental condi-
tions which created large variations in the thermal im-
agery. As the approach is not limited to only extracting
silhouettes of people, we also demonstrated the method
for extracting silhouettes of a dog and vehicle. Further-
more, we showed the applicability of the approach to
color imagery.

To further improve our results, we plan to include
motion information into the saliency map, and em-
ploy shaped-based models for better figure comple-
tion and tracking. Furthermore, we will incorporate
an adaptive background model to test our algorithm
over longer durations. Of special interest will be to
employ the extracted silhouettes in an activity recog-
nition system (e.g., Bobick and Davis, 2001) for event
detection. We expect our approach to be an effective
advancement towards persistent and automatic video
surveillance.
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