
S-FINCH: An Optimized Streaming Adaptation
to FINCH Clustering

James Cunningham∗, Jim Davis∗, Kyle Tarplee† and Juan Vasquez‡
∗Department of Computer Science and Engineering,

Ohio State University, Columbus, OH 43210
Email: {cunningham.844, davis.1719}@osu.edu

†University of Dayton Research Institute, Dayton, OH 45469
Email: Kyle.Tarplee@udri.udayton.edu

‡Air Force Research Laboratory, Wright-Patterson AFB, OH 45433
Email: juan.vasquez.11@afresearchlab.com

Abstract—Real-world datasets are growing ever larger and
more dynamic, motivating the need for efficient online data explo-
ration algorithms. In this work, we present S-FINCH, a streaming
domain optimization of the recent FINCH clustering method. The
original FINCH approach demonstrated state-of-the-art offline
performance while avoiding sensitive hyperparameters but was
not designed for the online data streaming domain. The proposed
S-FINCH method is an exact, incremental update to the FINCH
approach which generates high-quality clusters while avoiding
the potential sensitivities of other online clustering methods. We
also provide alternative cluster tree representatives for faster
empirical cluster times. Experiments are shown comparing the
original FINCH approach to the proposed S-FINCH method in
a streaming domain with multiple benchmark synthetic and real
datasets. The S-FINCH method leverages the ability to make
local changes for efficient, real time updates and can be applied
to multiple data streaming scenarios.

I. INTRODUCTION

As the number of data sources and dynamic datasets grows,
so does the need for efficient online algorithms to process
them. Clustering is a very important data exploration tool
used in various fields from data science to machine learning.
Online clustering is the process of grouping samples in a
data stream into meaningful collections as they appear over
time. Unfortunately, available online clustering methods suffer
from a sensitivity towards required data abstraction methods,
various hyperparameters (i.e. number of clusters, density pa-
rameters, neighborhood sizes), outliers within the dataset, and
poor scaling towards large numbers of clusters [1], [2].

The recent FINCH algorithm [3] presents an offline cluster-
ing algorithm which avoids sensitive hyperparameters, build-
ing a cluster graph using first-neighbor relationships as edges
between samples and defining clusters as connected graph
components. The FINCH algorithm aggregates these clusters
to build a bottom-up cluster hierarchy quickly creating clusters
of high purity with no prior knowledge of the data required.
However, the FINCH algorithm is by design an offline clus-
tering algorithm. It is not designed to efficiently handle the
introduction of new data and thus requires a full re-clustering
of all the data samples when even one new sample enters
the space. As datasets become more dynamic with continuous

streaming updates, it is important to consider how to efficiently
update the cluster space over time to reflect the new data.

In this work we present an online modification to FINCH
which we call Stream-FINCH (S-FINCH). We initially ex-
amine the stages of the FINCH algorithm and leverage key
insights to produce an algorithm which reduces the online
update complexity. We then compare the performance of S-
FINCH and FINCH over multiple synthetic and real-world
datasets. We show theoretically and empirically that the pro-
posed S-FINCH algorithm is more efficient than the FINCH
algorithm in the online domain and has reasonable real-time
performance. We additionally present several different cluster
representatives which can be used to efficiently construct the
agglomerative cluster hierarchies used in FINCH. Lastly, we
compare the cluster quality and clustering time performance
using these new representatives.

II. RELATED WORK

Offline or batch clustering algorithms assume all relevant
data is present at clustering time and can be processed at once.
These algorithms are very well studied and employ a variety of
strategies including partitioning, hierarchies, density models,
subspace projection and graph theory [4], [5], [6], [7], [8], [9].
The most common among these strategies are partitioning and
hierarchy-based methods.

Partitioning methods such as k-means or k-medoids pre-
define the number of desired partitions to efficiently cluster
data, but suffers greatly from a strong sensitivity to outliers,
the number of preset clusters, and the initial position of
cluster representatives, as well as easily being drawn to local
optima and having poor performance on non-convex data [2].
Hierarchical clustering methods aim to develop a hierarchical
relationship among the data which is leveraged for clustering
[6], [7], [10]. These methods are interpretable, scalable, and
suitable for arbitrary data types, but can have high time
complexities and are still sensitive to the preset number of
clusters [2].

Unlike offline clustering, online algorithms assume non-
stationary, unbounded data streams in which objects arrive
continuously and in any order [1]. The nature of these data
streams imposes more stringent requirements on time and

International Conference on Pattern Recognition (ICPR), August 21-25, 2022

memory complexity. For this reason, online clustering follows
a two-phase approach: an online data abstraction phase which
summarizes incoming blocks of data followed by an offline
clustering phase which clusters sets of abstractions at defined
intervals [1]. This paradigm improves online performance
by reducing the number of objects through abstraction and
moving the most inefficient phase, clustering, to an offline
process. However, this approach introduces several inherent
weaknesses that must be accounted for within both the data
abstraction and clustering phases.

The data abstraction phase introduces sensitivity to both
the specific data abstraction approach and approach-specific
parameters such as window size and statistics about the data.
Abstraction also introduces information loss and assumes a
relationship among summarized objects which may not exist.
Notably, the clustering phase in this paradigm is simply
offline clustering on the abstractions. Therefore the online
clustering algorithm inherits the weaknesses of the chosen
offline clustering method, most often k-means [10], [11], [12],
[13], [14], [15] or density-based clustering methods such as
DBSCAN [8], [16], [17], [18] (chosen for their low time
complexity given a preset number of clusters).

Recent work has also introduced “deep clustering” as a
method of identifying partitions in datasets. Deep clustering
uses trained deep neural networks to generate easily cluster-
able data representations or directly cluster input data [19],
[20], [21], [22]. These methods can leverage deep learning
frameworks to quickly process input data streams at speeds
that can allow online clustering, but can be difficult to inter-
pret, require large amounts of training resources, and struggle
to handle data outside of the training distribution [23].

Our proposed S-FINCH algorithm addresses these issues
by extending FINCH, a state-of-the-art hierarchical offline
clustering method to the online domain. The high time com-
plexity of hierarchical methods is avoided in S-FINCH by
leveraging information in the existing hierarchy to perform
efficient cluster updates when given new data. This method is
a single phase, purely online approach that does not require
data abstraction, a predefined number of clusters, or training
and retains the scalability and flexibility of other hierarchical
methods, making it suitable for data exploration with no prior
assumptions of the dataset.

III. ORIGINAL FINCH ALGORITHM

The FINCH algorithm [3] provides a method of clustering
by operating on the input dataset in three main stages: generate
a graph from the dataset, label the connected components of
the graph as clusters, and build a cluster hierarchy.

The first stage of FINCH generates a cluster graph using
an adjacency matrix A that computed using the following
clustering equation from [3]:

A(i, j) =

{
1 if k1i = j or k1j = i or k1i = k1j
0 otherwise

(1)

where k1i is the first nearest neighbor of sample i. This graph
directly represents the first and shared neighbor relationships

between samples in the input space. In the worst case this
operation takes Θ(n2) time for a true (non-approximate)
nearest neighbor search. The second stage of FINCH labels
the connected components produced in Stage 1 as clusters. In
the worst case, all n samples are connected via n2 edges so
this operation requires a O(n2) graph traversal.

FINCH then constructs a hierarchy of cluster partitions to
avoid small, fractured clusters. Each level in this hierarchy is
constructed by applying Stages 1 and 2 to the cluster means
of the previous level, adding levels until the clusters converge.
Since the minimum cluster size in FINCH is 2, the largest
possible hierarchy is a full, balanced binary tree of height
log(n). This means the worst case time complexity of the
FINCH algorithm can be expressed as:

(Θ(n2) +O(n2)) ·O(log(n)) = O(n2log(n)) (2)

The resulting hierarchy represents a fully unsupervised and
parameter-free exploration of the input samples with each level
representing a different set of possible cluster partitions. The
levels can be examined and the most appropriate partition
chosen based on the problem domain to give a final output
clustering of the input samples.

However, since FINCH is an offline batch clustering algo-
rithm, a naı̈ve approach to online clustering requires a full re-
clustering of the samples when any new data is introduced.
Therefore the worst-case time complexity of processing n
samples from a continuous data stream using FINCH is

O(n ·O(n2log(n))) = O(n3log(n)) (3)

We use this analysis of FINCH to motivate an online adapta-
tion which reduces the single iteration update complexity.

IV. PROPOSED S-FINCH ALGORITHM

We present Stream-FINCH (S-FINCH), an efficient online
clustering variant of FINCH. S-FINCH leverages several key
insights into the FINCH cluster graph that reveal the potential
for efficient local updates to the cluster partitions given a new
sample. The resulting cluster partitions will always be identical
to the FINCH clusters produced using the same set of data
points, regardless of the order in which points are processed.

We initially note that since shared nearest neighbor edges
connect samples which share a nearest neighbor, remov-
ing them from the cluster graph never changes the graph’s
connected components. The samples in question are already
connected via their nearest neighbor. For this reason we do not
consider or compute the shared nearest neighbor edges for the
S-FINCH algorithm and only keep the first neighbor edges.
This reduces the worst-case number of edges in the cluster
graph from n2 to n.

We also note that cluster updates are necessarily local
to the new sample and that each connected component in
the cluster graph contains exactly one cycle. Storing cycle
information allows for efficient clustering behavior when a
new sample is introduced. Additionally, the FINCH algorithm
builds successive hierarchy levels using the cluster means
of the previous level. Cluster means will necessarily change

𝑥

(a)

𝑥
𝑞

Cycle

Pre-Cycle

𝑆

(b)

𝑥

(c)
Fig. 1. S-FINCH Sample Relations. (a) Input cluster graph. (b) S-FINCH Stage 1: Cluster Graph Update. (c) S-FINCH Stage 2: Cluster Labeling.

during cluster updates, forcing the entire cluster hierarchy
to be rebuilt. However, other cluster representatives can be
employed to avoid this behavior and generate different cluster
partitions.

A. Proposed Method

The S-FINCH algorithm operates in three stages similar to
the original FINCH algorithm (as presented in Algorithm 1).
The first stage efficiently updates a given cluster graph given
a new sample x while finding both x’s nearest neighbor q,
and the set of updated samples S. The second stage updates
the cluster labels by performing a local search of the cluster
graph from the new sample x. Finally, the third stage updates
the cluster hierarchy given the new bottom-level clusters.

Algorithm 1: S-FINCH()
Data: L: List of partitions, x: new sample
begin

C ←− first group of partitions in L
U ←− ∅ // set of updated clusters
while |C| > 1 or |U | > 0 do

// Stage 1
Update edges in C, finding nearest neighbor q

of x and set of samples S linked to x
// Stage 2
Identify cluster label xL from q
Label x’s cluster and find cluster’s cycle
// Stage 3
R←− cluster representatives
C ←− next group of partitions in L
U ←− R \ C

The first stage of S-FINCH updates a given FINCH cluster
graph from time t− 1 with the new sample x in a single pass
through the dataset, finding x’s nearest neighbor q and the set
S of any samples which have x as their new nearest neighbor
(as shown in Fig. 1) in Θ(n) time.

In the FINCH cluster graph, clusters are connected compo-
nents. When a new sample is introduced, each cluster either
grows by gaining edges, splits by losing edges, or remains
the same. Since each edge represents a nearest neighbor
relationship, all samples with changed edges are members of
S with the only other new edge belonging to x. Therefore,
given q and S, we can efficiently determine how the clusters

of the FINCH cluster graph have changed post-update and find
xL, the cluster label of x, in constant time.

If q is not a member of S then it has not been updated, so
xL = qL. If q instead is a member of S, then it is possible q’s
cluster has split. In this case, if q was in a cycle prior to the
update, then q’s cluster didn’t split and xL = qL. Otherwise,
q’s cluster has split and now points to x so a new xL is
assigned.

Once xL is determined, x’s cluster is labeled using a O(n)
depth-first search on the undirected cluster graph from the
members of S (as shown in Fig. 1). Since efficient cluster
labeling requires cycle information, once the cluster is labeled,
its cycle is found using another O(n) depth-first search from
x. With this, the S-FINCH cluster graph is updated and each
connected component is assigned a unique cluster label. These
new clusters can now be agglomerated to form a hierarchical
cluster tree.

Cluster agglomeration in S-FINCH is identical to the origi-
nal FINCH algorithm, where the partition at a hierarchy level
is computed from the set of cluster representatives from the
previous level. This means the largest hierarchy has height
log(n). Given the complexity of clustering a level in S-FINCH,
the total worst-case time complexity of S-FINCH can be
expressed as

O((Θ(n) +O(n)) · log(n)) = O(nlog(n)) (4)

This results in an overall reduction in the update time com-
plexity of the S-FINCH algorithm compared to the original
FINCH algorithm (Eqn. 2).

Furthermore, there is a reduction in overall online time
complexity in S-FINCH when clustering n samples from a
continuous data stream:

O(n ·O(nlog(n))) = O(n2log(n)) (5)

as compared to FINCH (Eqn. 3).
We note that for the online clustering domain, it is only

necessary to update levels where a cluster representative has
changed. “Virtual” representatives such as the cluster mean
are not actual samples and therefore always change when a
cluster is updated, changing the entire hierarchy. Using an
actual sample as a prototype instead gives a discrete set of
possible representatives, making it possible that no cluster
representatives change after an update. This can significantly
reduce necessary operations during agglomeration.

We offer four different cluster representatives. A Mean
virtual representative is the mean of the original input samples
included in the cluster partition as used in the original FINCH
algorithm. A Mean-of-Means virtual representative is a mean
calculated using the mean representatives of the previous level
in the hierarchy for the current cluster partition. Representa-
tives Prototype 1 and Prototype 2 are the actual samples in
the cluster partition closest to the Mean and Mean-of-Means,
respectively. We will compare each of these representatives
empirically in our experiments.

V. EXPERIMENTS

We present our experiments in two phases, first examining
the initial bottom level clustering results then observing the
effect of different cluster representatives on cluster agglomer-
ation and clustering performance.

A. Datasets

We conduct our experiments using the following datasets
used in the original FINCH experiments. The Aggregation
dataset [24] is a 2-D point clustering dataset of 788 samples
grouped into 7 clusters. Similarly, we use the Gestalt [25]
cluster dataset of 399 2-D samples over 6 ground truth
clusters1. For our larger-scale datasets, we first employ the
MNIST handwritten digit 10K test set, using rasterized 784-
D vectors of the pixels. Finally we examine the CIFAR-10
natural image dataset using 512-D feature vectors of the 10K
test set. These feature vectors were extracted just before the
fully connected layer from a modified ResNet-18 [26] CNN
(first convolutional layer replaced by a 3x3 convolution of
stride 1 with no max pooling).

B. FINCH*

For additional comparison, we aim to provide a simple
baseline optimization for FINCH. One option is to simply
assign incoming samples to the nearest cluster partition on the
first level of the hierarchy before updating the entire hierarchy.
However, this approach does not allow for cluster separation
and produces different clusters from FINCH.

Instead, we note that a simple streaming domain opti-
mization to the FINCH algorithm can be used that does
not recompute the entire pairwise distance matrix when a
new sample is introduced. Instead, only the pairwise distance
between the new sample and existing samples is computed.
This optimization reduces the complexity of FINCH Stage 1 to
Θ(n). However, this does not change the overall upper bound
given in Eqn. 2. We refer to this variant as FINCH*. The
update and online overall final time complexities of FINCH*
are identical to FINCH.

1Note that the 2-D datasets include samples with more than two samples
equidistant from each other. The original FINCH algorithm [3] does not
include any details regarding choosing a nearest neighbor from a set of
equidistant options. Therefore, we added an extremely small amount of
Gaussian noise to the datasets so no sample is equidistant to more than one
other sample.

C. Bottom-Level Clustering Comparisons

We compare several metrics of the bottom-level cluster
output from which the theoretical complexities were derived
and relate these results to relative running times for FINCH,
FINCH*, and S-FINCH.
Cluster Graph Statistics: The results in Table I suggest
the bottom-level cluster output for these datasets consists of
many small, fragmented clusters. These small clusters are
actually more desirable for S-FINCH than FINCH since the
number of clustering operations required for S-FINCH Stage 2
increases linearly with cluster size (FINCH is quadratic). Table
I shows that cluster size remains small and nearly constant
with respect to dataset size. These empirical observations
of FINCH clustering behavior should translate into a small,
nearly constant number of required operations for S-FINCH
Stage 2, suggesting S-FINCH bottom-level clustering times far
below the theoretical worst-case.
Cluster Update Times: We see from Tables II and III that our
empirical relative cluster time (results are computed and timed
on a standard laptop) matches the theoretical expectations
derived in the previous sections. Both the FINCH and FINCH*
algorithms fail to be feasible online clustering options for the
larger MNIST and CIFAR-10 datasets, taking over 3 hours
to process less than 50% of each dataset with the remaining
running time expected to increase quadratically. In contrast, the
results of the S-FINCH algorithm in Tables II and III show an
order of magnitude decrease in cluster time for both the final
sample update and the clustering of the entire dataset stream.
S-FINCH Scaling: Here we examine the behavior of S-
FINCH as the dataset size scales. For this we created a
dataset of increasing size using random 2-D sample vectors
drawn from a uniform distribution. The results in Table IV
show that the update time and the distance calculation time
increase linearly with input size while cluster labeling time
stays relatively constant over increasing input sizes. This
suggests that any further improvement to S-FINCH Stage 1
will dramatically reduce clustering times.

D. Cluster Agglomeration

In this section we examine the effect of the cluster repre-
sentative choice used in the hierarchical updates.
Stopped Level: Table V compares the average level in the
bottom-up hierarchy at which computation stopped (lower is
better) vs. the height of the cluster hierarchy. These results
empirically validate that the virtual representatives (Mean,
Mean-of-Means (MoM)) will always require every level in
the tree to be re-clustered during an update and that the actual
prototypes on average stopped within the first few levels of the
hierarchy. We note that Prototype 2 typically stopped earlier
than Prototype 1 across the datasets. This is likely due to the
Mean-of-Means cluster representation (used in Prototype 2)
being less sensitive than the Mean (used in Prototype 1) to
changes in the cluster it represents.
Agglomeration Time: We report the relative average cluster
agglomeration time in Table VI for the different cluster repre-
sentatives across our datasets. The results in Table VI follow

Ground Truth Mean (NMI = 83.2) Mean-of-Means (NMI = 83.1) Prototype 1 (NMI = 76.6) Prototype 2 (NMI = 79.2)

Fig. 2. CIFAR-10 Refined Clusters on 2-D t-SNE Reduction.

Aggr. Gestalt MNIST CIFAR-10
Clusters 243 91 1951 1628

Cluster Size 3.24 2 7 4.39 2 28 5.13 2 39 6.14 2 52
Cycle Size 2.00 2 2 2.00 2 2 2.00 2 2 2.00 2 2

TABLE I
BOTTOM-LEVEL CLUSTER METRICS (MEAN/MODE/MAX). CLUSTERS: NUMBER OF CLUSTERS. CLUSTER SIZE: NUMBER OF SAMPLES PER CLUSTER.

CYCLE SIZE: NUMBER OF SAMPLES IN A CLUSTER CYCLE.

Aggr. Gestalt MNIST CIFAR-10
FINCH 0.015 5.9e-3 3.14 2.26
FINCH* 0.67x 1x 0.61x 0.38x
S-FINCH 0.01x 0.02x 0.02x 0.02x

TABLE II
FINAL SAMPLE RELATIVE ONLINE UPDATE TIME (SEC).

Aggr. Gestalt MNIST CIFAR-10
FINCH 5.31 1.44 > 3 hours > 3 hours

FINCH* 0.87x 0.92x > 3 hours > 3 hours
S-FINCH 0.11x 0.13x 508.75 180.27

TABLE III
ALL SAMPLES RELATIVE ONLINE UPDATE TIME (SEC).

Size Update Time Distance Labeling
10000 3.2e-4 2.2e-4 2.0e-6
20000 1.66x 1.86x 0.5x
50000 4.69x 5x 1.5x
80000 7.19x 7.73x 2.0x
100000 8.75x 9.55x 2.0x

TABLE IV
S-FINCH RELATIVE UPDATE TIMES OVER INCREASING n (SEC).

Aggr. Gestalt MNIST CIFAR-10
Mean 7 / 7 6 / 6 7 / 7 7 / 7
MoM 6 / 6 6 / 6 8 / 8 7 / 7

Proto. 1 2.3 / 7 2.3 / 6 1.7 / 7 1.7 / 7
Proto. 2 1.8 / 7 1.6 / 6 1.3 / 8 1.3 / 7

TABLE V
AVERAGE STOPPED LEVEL OF AGGLOMERATION VS. TREE HEIGHT.

the expectations from Table V, showing that actual prototypes
result in lower computational cost. Stopping earlier in the
hierarchy results in fewer operations during agglomeration and
shorter agglomeration times for our prototype representatives.
Among the prototype representatives, use of Prototype 2 was
faster than Prototype 1 across the datasets.

Aggr. Gestalt MNIST CIFAR-10
FINCH 1.1e-2 6.0e-3 0.49 0.46
Mean 0.38x 0.3x 0.24x 0.15x
MoM 0.33x 0.28x 0.24x 0.15x

Proto. 1 0.21x 0.18x 0.06x 0.04x
Proto. 2 0.10x 0.09x 0.03x 0.02x

TABLE VI
AVERAGE RELATIVE AGGLOMERATION TIME AFTER FINAL SAMPLE

UPDATE (SEC).

E. Clustering Quality

Many evaluation methods have been proposed to measure
cluster quality [27], [28], [29], [30], [31]. We choose to
follow [3] and quantitatively measure cluster quality using
the Normalized Mutual Information (NMI) [32] between the
clustering algorithm output and ground truth (larger values are
desired). We supplement these results with a qualitative visual
representation of the cluster output using different cluster
representatives.

We compare clustering quality using different cluster rep-
resentatives by calculating the NMI between the best cluster
partition in the cluster hierarchy and the given dataset’s ground
truth. The best cluster partition was chosen as the level in
the cluster hierarchy with a number of clusters closest to
the actual number of ground truth classes. From the NMI
results in Table VII, the clustering quality of the different
cluster representatives is similar within each dataset except
for MNIST (to be discussed). We note the Mean representative
results do not match [3] as their results were generated using
an “early exit” strategy in their code not mentioned in their
discussion of the algorithm. Our results are consistent with the
algorithm presented in [3].

In [3] they also present a simple method for refining a cluster
partition to a given number of clusters. First, the level in the
hierarchy with the smallest number of clusters greater than the
target number of ground truth classes is chosen. The closest
clusters in this level are iteratively merged until the target

Aggr. Gestalt MNIST CIFAR-10
Mean 81.5 68.6 58.8 64.8
MoM 81.2 69.6 67.0 64.5

Proto. 1 77.6 66.3 40.2 60.4
Proto. 2 81.7 66.0 33.8 62.9

TABLE VII
NMI AT GROUND TRUTH.

number of clusters is reached. We report the corresponding
refined NMI scores in Table VIII.

Aggr. Gestalt MNIST CIFAR-10
Mean 85.5 68.6 70.0 64.8

Mean-of-Means 98.7 69.6 70.5 64.5
Prototype 1 80.6 66.0 45.7 62.2
Prototype 2 86.9 66.4 50.7 62.8

TABLE VIII
REFINED NMI AT GROUND TRUTH.

F. Sparse Data

The previous experiments demonstrated a severe degrada-
tion in NMI when using the actual cluster representatives for
the MNIST dataset. This suggests that a limitation exists in
using these prototypes as cluster representatives. The MNIST
dataset consists of 28x28 nearly binary images which were
rasterized into vectors for clustering. We note that these
vectors are very sparse and therefore mostly exist on the
corners a 784-D unit hypercube. Thus the mean of multiple
FINCH clusters will not be near any of the actual samples,
and therefore can explain the performance gap for MNIST.

We demonstrate this sparsity effect by instead using a dense
embedding of the MNIST dataset obtained using features from
the penultimate layer of a simple 2-layer CNN trained on
MNIST to 98.7% test accuracy. We ran S-FINCH clustering
on these 128-D MNIST CNN feature vectors across all cluster
representatives and report the new NMI scores in Table IX.
The Prototype NMI scores of the CNN features in Table IX
are more consistent with the results in Tables VII for the other
datasets.

Rasterized Pixels CNN Features
Raw Refined Raw Refined

Mean 58.8 70.0 94.3 94.3
MoM 67.0 70.5 94.5 94.5

Proto. 1 40.2 45.7 85.1 92.3
Proto. 2 33.8 50.7 88.5 88.5

TABLE IX
RAW VS. REFINED NMI OVER MNIST FEATURE REPRESENTATIONS.

G. Comparison to Baseline Clustering Algorithms

We also compare these refined S-FINCH NMI scores (using
Mean-of-Means cluster representatives) in Table X to several
baseline clustering methods used for the offline clustering
phase of many online clustering algorithms [3], [33], [34],
[35], [9], [36], [10]. Note that the reported values for FINCH
differ from [3] as we do not consider scores obtained using
any additional early stoppage techniques (as was used in [3]).

Unlike S-FINCH’s single phase approach, all major online
clustering algorithms operate in a two-stage approach of online
data abstraction clustered using an offline clustering backbone.
As S-FINCH avoids the data abstraction step, we only compare
cluster quality between S-FINCH and the offline clustering
backbones using raw samples with no data abstraction. We
expect these backbones to produce better clusters using no data
abstraction as this is their intended offline domain. The results
in Table X demonstrate that S-FINCH largely outperforms all
other baselines on the Aggregation dataset and MNIST CNN
dataset while having comparable performance on the Gestalt
and CIFAR-10 datasets.

Aggr. Gestalt MNIST CIFAR-10
S-FINCH (MoM) 98.7 69.6 94.5 64.5

FINCH -13.2 -1.0 -0.2 -0.3
K-means -11.0 1.9 -6.5 5.1
Spectral -17.7 5.4 -92.6 -0.3

HAC -6.7 3.7 -2.6 2.2
SSC -24.7 -2.6 -12.2 -72.0

EN-SSC -54.2 -27.6 -8.0 0.4
BIRCH -14.0 12.8 -2.6 2.3

TABLE X
RELATIVE BASELINE COMPARISON (NMI).

We supplement the quantitative cluster quality results given
by NMI scores with a qualitative visual clustering in Fig. 2
of CIFAR-10 using the different cluster representatives. We
first reduced the CIFAR-10 dataset to 2-D using t-SNE [37]
and then colored the data using the refined clustering results.
We note that qualitatively all of the cluster representatives are
comparable to ground truth, each finding visually separable
groups within the dataset.

VI. CONCLUSION

We presented S-FINCH, an online streaming domain opti-
mization to the offline FINCH algorithm. We showed that S-
FINCH provides theoretically and empirically more efficient
online updates than the original FINCH algorithm, producing
exact bottom-level cluster output that is provably identical
to the original FINCH algorithm’s cluster results. We also
introduced alternative cluster representatives for agglomeration
that can reduce the necessary agglomeration computation.
The current bottleneck of S-FINCH is the search for updated
vertices in the cluster graph and is recommended for future
work. We also suggest further experimentation of different
cluster representatives that can assist with Stage 1 search
and/or increase cluster quality. As data sources grow even
larger and become more numerous, we expect efficient online
clustering algorithms such as S-FINCH to become key tools
for data science. Our Python implementation of S-FINCH is
available at https://github.com/jamie-cunningham/sfinch.

VII. ACKNOWLEDGMENT

This research was supported by the US Air Force Research
Laboratory under contract #GRT00054740.

REFERENCES

[1] J. Silva, E. Faria, R. Barros, E. Hruschka, A. de Carvalho, and J. Gama,
“Data stream clustering: A survey,” ACM Computing Surveys, vol. 46,
03 2014.

[2] D. Xu and Y. jie Tian, “A comprehensive survey of clustering algo-
rithms,” Annals of Data Science, vol. 2, pp. 165–193, 2015.

[3] S. Sarfraz, V. Sharma, and R. Stiefelhagen, “Efficient parameter-
free clustering using first neighbor relations,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[4] U. V. Luxburg, “A tutorial on spectral clustering,” Statistics and com-
puting, 2007.

[5] L. Kaufman and P. J. Roussew, Finding Groups in Data - An Introduction
to Cluster Analysis. A Wiley-Science Publication John Wiley & Sons,
1990.

[6] R. Sibson, “SLINK: an optimally efficient algorithm for the single-link
cluster method,” The Computer Journal, vol. 16, no. 1, pp. 30–34, 1973.

[7] D. Defays, “An efficient algorithm for a complete-link method,” The
Computer Journal, vol. 20, no. 4, pp. 364–366, 1977.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based al-
gorithm for discovering clusters in large spatial databases with noise.”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, vol. KDD-96. AAAI Press, 1996, pp.
226–231.

[9] E. Elhamifar and R. Vidal, “Sparse subspace clustering: algorithm,
theory, and applications,” IEEE transactions on pattern analysis and
machine intelligence, November 2013.

[10] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data
clustering method for very large databases,” in Proceedings of the ACM
SIGMOD international conference on Management of data, 1996, pp.
103–114.

[11] A. Kumar, A. Singh, and R. Singh, “An efficient hybrid-clustream
algorithm for stream mining,” in 2017 13th International Conference
on Signal-Image Technology Internet-Based Systems (SITIS), 2017, pp.
430–437.

[12] P. Kranen, I. Assent, C. Baldauf, and T. Seidl, “The clustree: indexing
micro-clusters for anytime stream mining,” Knowledge and Information
Systems, vol. 29, no. 2, pp. 249–272, Nov 2011.

[13] J. Gama, P. Rodrigues, and L. Lopes, “Clustering distributed sensor data
streams using local processing and reduced communication,” Intell. Data
Anal., vol. 15, pp. 3–28, 01 2011.

[14] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan,
“Clustering data streams: Theory and practice,” IEEE Trans. on Knowl.
and Data Eng., vol. 15, no. 3, p. 515–528, Mar. 2003.

[15] M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lam-
mersen, and C. Sohler, “Streamkm++: A clustering algorithm for data
streams,” ACM J. Exp. Algorithmics, vol. 17, May 2012.

[16] Y. Chen and L. Tu, “Density-based clustering for real-time stream data,”
in Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’07. New York, NY,
USA: Association for Computing Machinery, 2007, p. 133–142.

[17] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” in In 2006 SIAM Conference on
Data Mining, 2006, pp. 328–339.

[18] R. Ahmed, G. Dalkılıç, and Y. Erten, “Dgstream: High quality and effi-
ciency stream clustering algorithm,” Expert Systems with Applications,
vol. 141, p. 112947, 2020.

[19] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering
for unsupervised learning of visual features,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 132–149.

[20] J. Cai, J. Fan, W. Guo, S. Wang, Y. Zhang, and Z. Zhang, “Efficient
deep embedded subspace clustering,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2022, pp. 1–10.

[21] Y. Li, P. Hu, Z. Liu, D. Peng, J. T. Zhou, and X. Peng, “Contrastive
clustering,” in 2021 AAAI Conference on Artificial Intelligence (AAAI),
2021.

[22] X. Zhan, J. Xie, Z. Liu, Y.-S. Ong, and C. C. Loy, “Online deep
clustering for unsupervised representation learning,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 6687–6696.

[23] L. Alzubaidi, J. Zhang, and A. Humaidi, “Review of deep learning:
concepts, CNN architectures, challenges, applications, future directions,”
Journal of Big Data, p. 53, 2021.

[24] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation.” ACM
TKDD, 2007.

[25] C. Zahn, “Graph-theoretical methods for detecting and describing
Gestalt clusters,” IEEE Trans. on Computers, vol. C-20, no. 1, pp. 68–
86, Jan. 1971.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, p. 770–778.

[27] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-
1, no. 2, pp. 224–227, 1979.

[28] J. C. Dunn, “A fuzzy relative of the isodata process and its use
in detecting compact well-separated clusters,” Journal of Cybernetics,
vol. 3, no. 3, pp. 32–57, Sep. 1973.

[29] E. B. Fowlkes and C. L. Mallows, “A method for comparing two
hierarchical clusterings,” Journal of the American Statistical Association,
vol. 78, no. 383, p. 553–569, 1983.

[30] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[31] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” Journal of the American Statistical Association, vol. 66, no. 336,
pp. 846–850, 1971.

[32] A. Fred and A. Jain, “Robust data clustering,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2003.

[33] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, ser. SODA ’07. USA: Society for
Industrial and Applied Mathematics, 2007, p. 1027–1035.

[34] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Proceedings of the 14th International Conference
on Neural Information Processing Systems: Natural and Synthetic, ser.
NIPS’01. Cambridge, MA, USA: MIT Press, 2001, p. 849–856.

[35] J. H. W. Jr., “Hierarchical grouping to optimize an objective function,”
Journal of the American Statistical Association, vol. 58, no. 301, pp.
236–244, 1963.

[36] C. You, C. Li, D. Robinson, and R. Vidal, “Oracle based active set
algorithm for scalable elastic net subspace clustering,” IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3928–3937,
2016.

[37] L. van der Maaten and G. Hinton, “Visualizing high-dimensional data us-
ing t-SNE,” Journal of Machine Learning Research, vol. 9: 2579–2605,
Nov 2008.

