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Advances in remote sensing systems provide human monitors access to more data.  The current
challenge is to help extract relevant patterns and direct the attention of human monitors and human
problem holders to the changing security picture with respect to acute situations (a normal market scene
turns into an ethnic confrontation) or longer term trends (seeing new patterns of ‘typical’ behavior to
avoid false alarms).  Security surveillance monitoring can be advanced through new event recognition
capability of autonomous monitors and by effectively coupling these sensor/algorithm systems to human
monitors and problem holders. To meet these challenges in security surveillance, we have developed an
event-sensitive architecture where machine agents provide event-based information to human monitors
and problem holders and are re-directable given contextual information.  The key innovation is a
context-based hierarchical event template structure which can be used to integrate data over a
distributed sensor system.

Challenges in surveillance and sensors
As people mill in a outdoor marketplace, can

peacekeeping forces anticipate signs of tensions rising
and notice when factions begin to coalesce and square
off (or similarly, in a parking lot or street after a game,
can police separate ‘normal’ post-game activities from
the beginnings of mob violence)? A lone figure enters a
large parking lot and roams from lane to lane; in the
homogenous backdrop of the lot, he cannot tell where
he parked much earlier that day. Obscured in the
stream of pedestrians after a football game, four figures
on opposite sides of a courtyard identify a victim and
begin to close in. In a rural landscape near a U.S. base,
a robed figure is walking along with a flock of goats—is
he caring for the flock or are his movements unrelated?
Is he carrying a light load of a meal and water in a sack
or is there a heavier load of arms obscured under his
robes?

In monitoring and surveillance, these kinds of
scenarios represent the difficulties in discriminating
unusual and threatening behavior against the backdrop
of the ranges of ‘typical’ behaviors of people in that
environment. What is informative in surveillance
includes recognizing activities, knowing typical and
threat patterns of behavior, inferring intent, seeing
through attempts to mask threats with ‘normal’
behavior.

Advances in remote sensing systems provide
human monitors access to more data. Simply providing
more and different sensors over wider areas does not in
itself help extract informative patterns from the
increasing sea of low level data. Security surveillance
can be advanced by organizing monitors around event

patterns to recognize changing security issues, e.g., a
normal market scene begins to turn into an ethnic
confrontation, or noticing new patterns of ‘typical’
behavior to avoid false alarms.

While there has been rapid advances in enabling
technology islands, there are important challenges for
taking advantage of sensor advances in future
surveillance systems.  These include how to model
complex events against changing background of activity
and at different time scales, how to integrate inputs
from data sources that vary in modality and in level of
autonomy, how to cull out unimportant data and avoid
the debilitating consequences of false alarms, how to
combine multiple information sources into a coherent
picture for human monitors, how to direct the attention
of human monitors to ‘interesting’ behaviors or changes
in behavior, and how to provide means for human
monitors or problem holders to re-direct and interact
with partially autonomous surveillance systems.

Event-Sensitive, Collaborative Autonomy
Previous work has shown that event patterns are

strongly context-sensitive which is a major barrier for
fully automated event recognition. Cooperative human-
computer solutions that greatly amplify the natural
ability of knowledgeable human monitors to perceive
and reason in terms of events provide a more promising
approach.

An interdisciplinary team is developing a
collaborative autonomy architecture where machine
agents provide event-based information to human
monitors and problem holders and are re-directable
given contextual information.  The key innovation is a



context-based hierarchical event template structure
which can be used to integrate data over a distributed
sensor system.

Building the hierarchical event structure begins
with the identification, modeling, and processing of
events (Warren and Shaw, 1985; Woods, 1995b; Zacks
et al., 2001). The formal methodology developed by
Christoffersen, Blike and Woods (2003) is used to
discover events in surveillance (based on previous work
by Newston, 1973; Zacks et al., 2001). This method (a)
can identify patterns that are important but may not be
available from interviews and other knowledge
elicitation techniques, (b) is time-based so that it
provides information about the actual temporal flow of
events, (c) reveals the background of expectations that
influence what is recognized as an event, given all of the
other changes which are or may be going on, (d) is
sensitive to difference between experienced and
inexperienced practitioners, (e) can discriminate
complex events that are defined by more than just data
features (e.g., the absence of an expected change as an
event).

What are events?

For our purposes, an event is a meaningful pattern
of change (or lack thereof) for an observer in a given
environment. Events are defined in terms of a contrast
with expectations (cf. Teigen and Keren, 2003).

Based on studies of human competence at event
recognition in monitoring complex processes,
Christoffersen and Woods (2003) have developed a new
model that captures the complexities of event patterns.
These complexities raise considerable barriers for fully
automated event recognition.  Instead the results point
to the promise of cooperative human-computer
solutions that utilize intermediate levels of automated
pre-processing to organize and present data in ways
that greatly amplify the natural ability of knowledgeable
human monitors to perceive and reason in terms of
events (Warren and Shaw, 1985).

The event cycle model is illustrated in Figure 1.
The event cycle consists of the influence model which
establishes expectations about future behavior. Sensed
data is analyzed for these expected data relationships.
Patterns noticed in the sensed data, because of their
deviation from expected observations, are used to
modify the model of the current situation and the cycle
continues. This model provides a means to structure
data about recurrent event patterns—event template
hierarchies.

Event Template Matrix
Event patterns are composed of episodes of

behavior and each episode is analyzed in terms of a
matrix based on the event cycle model.  Episodes
define the rows of the matrix including recurrent types
of onset (e.g., the surprise episode), body of the event

(episode types such as deviation from typicality,
response to interventions), and resolution. Onsets are
precipitators or harbingers of events. The event body
consists of the activities that carry the semantic content
of the event, and the resolution is the termination of the
activity and movement into next event (e.g., resolution in
the Deteriorate/Recovery pattern in Table 2 is a return to
target values, but the recovery can overshoot the target
and lead to a new event sequence).

Figure 1. A model of factors underlying the recognition of
event patterns in a dynamic telemetry stream (from
Christoffersen and Woods, 2003).

Event pattern templates can be likened to frames in
which attribute slots and their partial temporal ordering
constitute the event template. An event template
codifies a sequence of episodes that make up the event
type plus the behaviors, feature relationships and
contextual information that make up each episode.

Each of the three episodes in a generic event
structure is broken down in terms of the 4 regions of the
Event Cycle model and the columns of the matrix
specify the behavior, relationships and context for each
(see Table 1; Tables 2 illustrates the use of the event
pattern templates).

Example of Event Pattern Templates

A general example of the Event Pattern Template
structure is the Deteriorate/Recover recurrent pattern
where the key relation at the outset is the difference
between the actual value of a leading indicator P and its
target. Since this surprising deviation, or anomaly, risks
significant consequences, there is a need for agents to
act to bring the process and this indicator back to
normal range. The cause of the anomaly is unknown.
The episodes that make up the body of the template are
characterized by the further movement away from the
target—continued deterioration. Expectations focus on
the effect of intervention taken to counteract whatever
influence is continuing to push P off-target. The next
episode is marked by the recognition that P does not
respond as expected to interventions – it continues to
drift higher. Finally, the resolution episode or
"turnaround" corresponds to where P eventually begins



to respond appropriately to the intervention and returns
towards the target range.  This resolution not only
concerns the recovery (return to target) but also the
possibility that the recovery can overshoot the target
and lead to a new event sequence.

Using event discovery methods in a particular
domain generates a set of templates that constitutes a
model of event patterns that can drive algorithm
development and human-computer cooperation design.

Table 1.  General Event Pattern Template
Event: NAME
Episode:  ONSET Behavior Relations Context Knowledge

features noticed

model of influences

expectations

features looked for

Table 2.  Event template for the first (onset) episode of the Deteriorate/Recovery pattern.
SURPRISE Behavior Relations Context Knowledge

features noticed P is critically moving off-target; level/direction of P relative to
target range

target range/limits for P in this
context; "criticality” of
anomaly?

model of
influences

presence of unknown influence
moving/holding P off-target

Anomaly-disturbances-fault
relationships

candidate set of problems
based on situation and
background information

expectations intervention urgently required;
responsiveness of P to intervention
will be diagnostic too

Interventions to fault
relationships

affordance set; what
interventions are appropriate,
possible

features looked
for

evidence of intervention; any
change in behavior of P in response

level of P relative to itself over
time; relative to target over
time

Event Hierarchies
The template structure is naturally multi-level as

episodes may be events in their own right with their own
episode sequence and feature relationships. This
induces an event template hierarchy as higher-level
events are generated from lower-level events. While in
principle, an event hierarchy has an arbitrary number of
levels, we have generally found that a 3 level structure
of low-level, mid-level, and high-level events is a very
useful heuristic.

Event-oriented base features are interesting
qualities of the sensed data that are directly computable
from the sensed data itself, in particular, the data
needed to specify transitions.  Note that this step shifts
data representation from elements such as states (e.g.,
current value) to an initial set of relationships based on
transitions.  This shift is essential to provide the
foundation for event recognition (Thronesbery et al.,
1999).

Low-level events are significant relationships
across the base features that specify some form of
behavior, i.e., change relative to a reference state (e.g.,
presence of a figure in a restricted area; rapid closing
distance between 2 moving figures that stands out
against typical relative motion in a market crowd).  Note

that assessing how the relationship of a transition or
sequence of changes conforms to or differs from
typicality for that context is at the heart of the shift from
data relations to event patterns. In other words, a
relationship across relationships—transitions relative to
typicality or reference.  We have found that algorithms
to extract low level events can be accomplished if
domain-specific accounts of typical behavior over
domain contexts are modeled.

Mid-level and high-level events have an extended
temporal structure of episodes that we model by the
onset-body-resolution triple.  Mid-level event triples are
composed of low-level events and often represent
shorter time scale structures or acute events.  High level
events generally also specify a context for mid-level
events.  High level event triples are made up of mid level
events and can be used to express longer time scale
patterns and support anticipating trends.

For example, consider monitoring of the RMS or
remote manipulator system on Space Shuttle (the robot
arm).  High level events are how the RMS supports flight
mission goals—grabbing or releasing a satellite and are
composed of transitions in the RMS.  The latter then
function as mid-level events (e.g., unstowing or stowing
the arm) which exist in the context of the plan, e.g. to



grab a satellite in need of repair, and which are
composed of the transitions that make up stowing (e.g.,
latching the arm). The latter then function as low level
events—latching—in the context of e.g. stowing and
composed of the event oriented base features which are
various state transitions signaled by telemetry of
sensors attached to the arm and related equipment.
This example illustrates how the 3 level heuristic is a
means to cope with the inherent context sensitivity and
multi-level nature of events—what is an event at one
level of representation is an element or a context at
other levels of representation.

An important property of events is that they exist in
relation to changing background activity and changing
views of what should or what usually occurs in a
context. This is similar to dynamic background update
when extracting the foreground in image processing. In
order to maintain a sense of this background, a model is
dynamically updated for the background activity or what
is typical in different contexts (e.g. what is typical goat
herding behavior varies in terms of season, threats to
the flock, and previous events such as a storm
scattering the flock).  It is this background activity model
that sets the context for the events to occur in.  We
have found repeatedly in evaluating visualization
systems on event recognition that a critical test is the
ability of human monitors to see the lack of change in
behavior when expectations change as a significant
event (e.g., Christoffersen et al., 2001).

Event Templates for Security Surveillance
To illustrate the scenario-based event discovery

process and to capture the complexity of the
relationships in event patterns consider one example
from security surveillance—Asset Defense Through
Concentric Protective Rings.  In this situation, a buffer
zone is set up to protect an asset given some organized
situation nearby (e.g. people within a stadium
attempting to reach a specific location on the stadium
field). An outer perimeter is set up to prevent groups or
some sub-group from gaining access to the asset (a
soft boundary set up based on the groups and their
activities and the kind of asset). In case of barrier
breakdown, an inner perimeter is also planned to
protect the asset and ensure public safety.

A scenario is used to discover event patterns:  the
situation escalates as the outer boundary is stressed
and then overwhelmed. Fallback is subsequently
initiated and a secondary boundary is actively set up.
The security interventions increase and inadvertently act
as a catalyst for further disturbances that increase the
threat to the asset and make resolution of the incident
more difficult.

In this scenario note that the onset episode is not
any given threat against the boundary in itself, rather it
is related to how the threats may escalate relative to the
security provided.  How do security monitors recognize

that threats are escalating:  as individuals begin to
coalesce into groups, as the energy of the crowd grows,
as groups begin to move toward entry points to the
targeted area.

The boundary is actively maintained (manned by
ushers with a few supporting security personnel).  As
groups continue to push toward key parts of the
boundary, contact with ushers occurs repeatedly,
stressing the outer perimeter.  As resources and
attention flow to these points, other sub-groups
become more aggressive and begin to probe for other
points to gain access to the target area.

Since the boundary has not been breached at this
point and there has been no overt aggressive behavior,
the focus of ushers is moving the accumulating crowds
away from the key entry points.  The increasing scale of
the surging groups threatens to spill over to the stadium
field.

Then the outer perimeter is penetrated
simultaneously at multiple locations.  The loss of
containment generates a significant security response
as uniformed security and police personnel respond.
The intervention influences the people’s behavior as
security personnel begin to feel pressed in on and
threatened and respond more aggressively to activate
the inner perimeter and try to contain the crowd.
Tension levels increase dramatically and hostile
interactions between the crowd and security begin to
occur (e.g., imprecise use of pepper spray instigates
more chaotic and aggressive behaviors).

To control and de-escalate the situation with
minimal risks of violence and injury while still protecting
the asset requires additional personnel and activities as
the scenario continues.

Scenarios such as above are used with security
professionals to discover the event boundaries and
relationships captured generically in Figure 1 and the
event template hierarchy described earlier.  Given an
event template hierarchy the question shifts to the issue
of how to design for collaboration between automated
monitoring sensor/algorithm nets and human monitors.

Design for Human-Machine Coordination
Human monitors are ultimately responsible for

ascribing significance to a situation to meet security and
surveillance goals. As the above scenario illustrates, the
background behavior can be so rich and varied that fully
automatic methods are guaranteed to fall short of
performance criteria (the fundamental brittleness and
literal-mindedness of automata; see Woods, 2002). On
the one hand, human monitors can be overwhelmed if
only raw or base sensor data is thrown at them. Hence
the target of the research is to produce a human-
machine architecture that dramatically advances the
ability of human monitors to find emerging threats in
security situations.



The event template structure and event hierarchies
provides the basis for a new architecture that enables
advances in:
(a) Intelligent Sensor Networks—the increasing the
sophistication and diversity of the sensors allows
networks to become increasingly attuned to informative
events. Event patterns support fusion of the data
collected over different sensors with different
information, different quality, different speeds, different
coverage and at different distances,
(b) Reconfigurable, Adaptive Sensor Networks—when
sensors are seen as active resources, adaptation can be
seen as reorganization of the sensor network/algorithms
in terms of events of interest which will allow human
monitors to direct system focus,
(c) Intelligent Alerting—when sensor system outputs are
organized relevant to event patterns, machine alerts and
prompts to areas, times and patterns of interest can be
used to redirect focus of human monitors and problem
holders (Woods, 1995a).
(d) Dynamic Field of Interest for Collaboration—a joint
focus or field of interest is a critical base concept for
any architecture that supports bi-directional refocusing
across time scales (Woods and Elias, 1988).  A smart
sensor network also has a field of interest defined
spatially, defined in how it adapts autonomously to e.g.
sensor failures, but also defined in terms of its
knowledge of event patterns including models of
typicality or reference conditions.
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