
Sequential Reliable-Inference
for Rapid Detection of Human Actions∗

James W. Davis
Dept. of Computer Science and Engineering

Ohio State University
Columbus, OH 43210 USA

jwdavis@cse.ohio-state.edu

Abstract

We present a probabilistic reliable-inference framework to
address the issue of rapid-and-reliable detection of human
actions. The approach determines the shortest video ex-
posure needed for low-latency recognition by sequentially
evaluating a series of posterior class ratios to find the ear-
liest reliable decision point. Results are presented for a set
of people walking, running, and standing at different styles
and multiple viewpoints, and compared to an alternative
ML approach.

1. Introduction
A fundamental question regarding activity recognition is
how much time is actually necessary to identify common
human actions? In the extreme case, people can easily rec-
ognize several different actions from looking at just a single
picture – one need only flip through the pages of a news-
paper or magazine to make this point. But when we see an
action at some random time (offset) during the movement
or at a non-canonical view, a longer exposure may be re-
quired to reliably distinguish it from other actions. Once
the action has been detected, a continual verification pro-
cess of the selected action likelihood could be used to retain
the classification label over the remainder of the sequence
(or announce when the action has changed).

From an applied standpoint, rapid activity recognition
is advantageous to automatic video-based surveillance for
systems having limited processing time scheduled per cam-
era or for systems employing time-lapse recording. UAVs
and mobile robotic platforms with quickly changing camera
views similarly require immediate decisions about the cur-
rent scene activity. Rapid detection may be particularly use-
ful as an initialization stage for bootstrapping more sophis-
ticated action-specific tracking or recognition approaches.

In an early perceptual study [12], it was shown that only

∗Appears inIEEE Workshop on Detection and Recognition of Events
in Video, Washington DC, July 2, 2004.

a brief exposure time (200 milliseconds) of moving point-
lights (attached to the joints of a moving person) was re-
quired for people to reliably distinguish a set different ac-
tions (variations of walking, running, and jumping jacks).
This work helps support the notion that long exposures or
repetitions (multiple cycles) of an action may not necessar-
ily be needed for reliable recognition.

We present an efficient probabilistic decision framework
for rapid action classification based on the concept of se-
quential reliable-inference. Instead of forcing a non-reliable
classification for constant-duration short exposures, we ex-
amine the reliability of the shortest time exposure first and
extend it (in time) only until a reliable classification of a
particular action can be made. The sequential inference
framework and the decision thresholds for each exposure
are automatically computed from training examples. The
approach is designed to handle all possible starting offsets
of the activities (not limited to start at the first frame). We
report results evaluating the concept of the framework for
distinguishing walking, running, and standing actions at dif-
ferent views, and compare the approach with an alternative
maximum-likelihood decision method.

We begin with a review of related single- and multi-
frame recognition approaches in Sect. 2. Next we give
an introduction to reliable-inference in Sect. 3. We then
present the proposed sequential reliable-inference approach
in Sect. 4, including algorithm details for temporal binding,
feature selection, and likelihood modeling. We present ex-
perimental results in Sect. 5. Lastly, we conclude with a
summary in Sect. 6.

2. Related Work

Many different approaches related to action recognition
have been proposed and are concisely reviewed in [1, 8, 22].
We briefly mention only a few approaches within the single-
and multiple-frame analysis domains.

Robust methods have been proposed for identifying
walking humans (pedestrians) in single images, including
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the use of wavelets [18], coarse-to-fine matching [9], and
point-distribution models [2]. Using two frames, the Ad-
aBoosting technique was employed in [21]. Two simple
region properties (dispersedness, area) were used in [13]
to classify regions (selected from image differencing), fol-
lowed by a temporal consistency measure (histogram) to
choose the most frequent action label assigned over several
frames.

Dynamic action recognition from sequences generally
include methods using analysis of trajectories or tem-
plates. For periodic actions such as walking and running,
trajectory-based approaches for single and multiple cycle
exposures include frequency-based Fourier methods [14],
feature-based properties (e.g., stride) [6], spatio-temporal
patterns [17], and HMMs [4]. With no part tracking, a dif-
ferent approach is to use spatio-temporal templates derived
from the image sequence directly, including generic layered
templates [3] and other periodic template representations
[19, 15, 5, 16].

We approach the action recognition problem differently
than the above work in that we seek to determine the
shortest-durationvideo exposures needed to achieve reli-
able recognition with minimal latency. We note that we
could potentially employ some of the above approaches to
represent video exposures within our decision framework
(we currently use [3]).

3. Reliable-Inference
We formulate our reliable-inference (RI) framework using
the “key feature” proposal of [11]. It states that the suc-
cess of inferring a world propertyP from an image feature
f in contextC can be formulated as thea posterioriprob-
ability p(P|f, C), where the contextC refers to a particu-
lar closed-world domain. A reliable-inference ofP from f
makesp(P|f, C) large, and the probability of making an er-
ror p(¬P|f, C) ≈ 0. A single reliability measurement off
for inferringP is formed by the ratio of these two posterior
probabilities

Rpost =
p(P|f, C)

p(¬P|f, C)
(1)

WhenRpost À 1, the featuref is said to be a highly reliable
indicator of propertyP.

Using Bayes’ rule,Rpost can be separated into the like-
lihood ratio and the ratio of the priors

Rpost =
p(P|f, C)

p(¬P|f, C)
=

p(f |P, C)
p(f |¬P, C)

· p(P|C)
p(¬P|C)

(2)

A large likelihood ratio indicates that the feature arises con-
sistently with the world property, but not in its absence. This
requirement alone however does not ensure a reliable infer-
ence. For if the ratio of priors becomes too small, thenRpost

becomes small even in the presence of a large likelihood ra-
tio. Hence a significant context-dependant prior ratio is also
required.

In our domain of action recognition, we considerf to be
a multi-dimensional feature vector for a given video expo-
sure of an action sequence, and define{A}C to be the set of
possible actions (world properties) in the contextC. We can
rewrite theRpost in Eqn. 2 for a specific actionAi ∈ {A}C

as

Rpost =
p(Ai|f , C)

p(¬Ai|f , C)
=

p(f |Ai, C)p(Ai|C)∑
j 6=i p(f |Aj , C)p(Aj |C)

(3)

For a given reliability thresholdTAi
, we will say thatf reli-

ably indicates the presence of actionAi if its Rpost > TAi
.

4. Sequential Reliable-Inference
To reliably recognize actions within the smallest video
exposure time (from any temporal offset), the preceding
reliable-inference formulation must be extended to effi-
ciently accommodate sequential decisions at several differ-
ent exposure lengths. Additionally, we must be able to se-
lect an appropriateRpost threshold for each action class at
each exposure length.

We present a multi-level sequential RI method that
automatically determines an appropriateRpost threshold
for each action exposure from negative examples and
links the training failures (unreliable frames) from one
level/exposure to the training input of the next (longer) ex-
posure level. For recognition, the framework continually
incorporates a new video frame into a longer video expo-
sure only until a validRpost for an action class is found.
The approach is depicted in Fig. 1.

4.1. Multi-Level Analysis
The sequential RI approach begins with determining the ap-
propriateRpost thresholds for each action class using only a
single video frame. Here all training sequences for an action
are grouped as a collection of individual/distinct frames. A
feature vector is computed for each frame, and the likeli-
hood distribution is estimated for each class.

For action classAi, we compute the maximumRpost of
all the negative (¬Ai) single-frame examples as

Tneg = max
p(f |Ai, C)p(Ai|C)∑

j 6=i p(f |Aj , C)p(Aj |C)
, ∀f ∈ ¬Ai (4)

Next we find the minimumRpost > Tneg of the positive
class (Ai) examples with

Tpos = min
p(f |Ai, C)p(Ai|C)∑

j 6=i p(f |Aj , C)p(Aj |C)
> Tneg, ∀f ∈ Ai

(5)
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Figure 1: Sequential reliable-inference.

and set the finalRpost threshold for classAi as

TAi = (Tneg + Tpos)/2 (6)

The use of negative examples enforces that no early clas-
sification errors occur within the training set, as additional
video frames would likely help to alleviate the ambiguities.

The positive class examples passing itsRpost threshold
are deemed as reliable single-frame indicators of that action
(i.e., key poses). Those training examples that fail their re-
spectiveRpost threshold are collected and passed on to the
next level (two-frame RI). Thus less examples are evaluated
in the next exposure length.

At the second level, we form a new training set of all the
unreliable (un-classified) frames from the previous single-
frame level. Each example is extended in time to include
the next video frame within its respective sequence to form
a training set of tuple frames. Any example that happens
to be the last frame in a training sequence (having no suc-
cessor frame) is discarded. A feature vector for each tuple
is then computed, and the two-frame likelihood distribution
is estimated for each class. TheRpost thresholds for this
level/exposure are calculated as in the first level, but using
only the tuple examples at this level. The positive example
failures for each class are then passed on to the next three-
frame exposure level for analysis.

The process of computing theRpost thresholds and iden-
tifying class failures at each level is continued until a stop-

ping criteria is met. An action class terminates at a par-
ticular level when its likelihood distribution cannot be cal-
culated due to an insufficient number of training examples.
The hierarchy itself terminates when only one action class
(or none) remains (Rpost requires a minimum of two classes
for comparison).

As some action classes may have reliably-inferred pro-
portionately more training examples than other classes at a
particular level (thus passing fewer examples into the next
level), the action priors should be adjusted to reflect the oc-
currence of the actions in the next level. Intuitively, if less
examples for a class are continued into the next level, there
is less of a chance of seeing that class as compared with the
previous level. For levell > 1, we weight the priors from
the previous level (l − 1) by the fraction of examplesω in
each class that are continued

pl(Ai|C) =
ωi · pl−1(Ai|C)∑
j ωj · pl−1(Aj |C)

(7)

If any class is terminated in levell − 1, the remaining class
priors are normalized before applying Eqn. 7.

An advantage to this sequential decision framework, in
terms of training, is that the data is systematically reduced
at each level of the hierarchy (i.e., the deeper in the tree,
the lesser amount of training data being used), and there-
fore less computation and potentially better class separabil-
ity can be achieved.

4.2. Recognition

For recognition, the first digitized video frame is examined
at the initial level of the hierarchy (single-frame exposure).
If the frame is found to be a reliable indicator of a partic-
ular action (above an action’sRpost threshold), we assign
that class label and exit the search. If instead the frame
is deemed unreliable (below everyRpost threshold at that
level), we include the next video frame to make a two-
frame exposure and examine theRpost values in the second
level looking for a reliable match. This process is contin-
ued down through the levels (increasing the exposure) until
either 1) a reliable-inference is found, 2) no more exposure
levels exist, 3) the final level contains one class, or 4) no ad-
ditional video frames are available to extend the exposure.

In case 2, when no match is found in the last level (con-
taining>1 actions), we select the action at this level having
the largestRpost (most reliable). If only one class remains
at the bottom level (case 3), then we choose this action by
default (only class available in the context). Lastly (case 4),
if an additional video frame for the next level is not avail-
able (e.g., due to occlusion, exit of scene, etc.), we choose
the action from the previous level with the largestRpost.
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4.3. Technical Details
4.3.1. Temporal Binding

We employ a temporal binding mechanism to extract a small
feature vector for multi-frame video exposures (rather than
concatenating the features for each image in the exposure).
We use the Motion History Image (MHI) representation
[3] to collapse the video exposure into a single 2-D tem-
plate that perceptually captures the essence of the move-
ment while retaining much of its temporal structure. MHIs
are well-suited to representing short-duration movements
(where complex tracking is not required).

An MHI is generated by layering successive images of a
person using a replacement-and-decay operator. The MHI
at framet (of a δ-frame exposure) is updated as

MHI t
δ(x, y) =





t/δ if Ψ(It(x, y)) 6= 0

MHI t−1
δ (x, y) otherwise

(8)
where each pixel (x,y) in the new MHI (at timet) is marked
with a normalized timestampt/δ if the functionΨ signals
presence of the person (e.g., silhouette, motion, or skin
color) in the current video imageIt(x, y). The MHI pix-
els whereΨ(It(x, y)) = 0 remain unchanged from the pre-
vious update. This function is called for every new video
frame analyzed in theδ-frame exposure.

4.3.2. Features

We represent each MHI with a feature vector of 7 similitude
moments that exhibit scale and translation invariance [10].
These moments produce excellent global shape descriptors
for grayscale and binary images and have previously been
demonstrated with MHIs [3]. For a given MHI, its first 7
similitude moments are computed as

ηij =

∑
x

∑
y(x− x̄)i(y − ȳ)jMHI(x, y)

[∑
x

∑
y MHI(x, y)

] i+j
2 +1

(9)

for orders2 ≤ (i + j) ≤ 3, resulting in a compact7 × 1
feature vectorf = [η02, η03, η11, η12, η20, η21, η30]T . If ro-
tation invariance is also desired, absolute moment invariants
[10] could be employed. We make no particular claim that
these are the optimal features (many other types of feature
descriptors could instead be employed).

4.3.3. Likelihood Modeling

To compute theRpost for an action class, a likelihood dis-
tribution for each action class is required. We model the
likelihood of feature vectorf appearing from a particular

action classAi as a Gaussian mixture model

p(f |Ai, C) = p(f |θAi
) =

K∑

k=1

wk · gk(f |µk, Σk) (10)

wheregk(f |µk, Σk) is the likelihood off appearing from
the k-th Gaussian distribution parameterized by the mean
µk and covarianceΣk, with mixture weightwk. For es-
timating the parametersθAi

, we employ the Expectation
Maximization (EM) algorithm [7] that maximizes the class
log-likelihood

L(θAi
|f1, · · · , fN ) =

N∑
n=1

log(p(fn|θAi
)) (11)

for N training examples in classAi.
Initial values for the means, covariances, and mixture

weights in Eqn. 10 can be estimated from a pre-clustering
of the training data using K-means. One issue regarding
mixture models is the number of distributionsK needed to
model the data. Rather than manually choosing an arbitrary
K, we employ a Minimum Description Length technique to
automatically select, from a set of models (each model con-
structed using a differentK), the model that maximizes the
Bayesian Information Criterion (BIC) [20].

The BIC for a given model parameterizationθAi is com-
puted as

BIC(θAi) = 2L(θAi |f1, · · · , fN )−M log(N) (12)

whereM is the number of independent model parameters
to be estimated. In our formulation, we have

M = K × (m +
m2 + m

2
) + (K − 1) (13)

with K distributions,(m+ m2+m
2 ) independent parameters

for each mean and covariance (m = dim(f) = 7), and
(K − 1) independent mixture weights (

∑
wk = 1).

Since the class log-likelihood of the mixture model (Eqn.
11) improves when more parameters are added to the model
(i.e., using a largerK), the termM log(N) is subtracted
from (twice) the class log-likelihood in Eqn. 12 to penalize
models of increasing complexity. The BIC is maximized
in an information theoretic manner for more parsimonious
parameterizations (to find the optimalK).

5. Experimental Results
To demonstrate the sequential RI framework, we selected
common activities of people walking, running, and stand-
ing at different styles and multiple viewpoints. We re-
port results on both the multi-level RI construction and
the corresponding recognition approach. We also compare
the results to a sequential classification using maximum-
likelihood (ML) instead of RI to determine the class thresh-
olds at each level.
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(a) (b) (c)

Figure 2: Example thermal images and silhouettes for (a)
walk slow/fast, (b) run slow/fast, and (c) stand hands-
side/hands-hips.

t = 1 t = 5 t = 9 MHI (1-9)

Figure 3: MHI for 9-frame running exposure.

5.1. Action Context
We recorded three people walking, running, and stand-
ing from eight different viewpoints using a FLIR (thermal)
video surveillance camera.

The walking and running actions were performed at slow
and fast paces to include the natural variations produced at
different speeds. One cycle at each pace was manually seg-
mented from the video. For standing, two common poses
of hands-at-side and hands-on-hips were performed. The
total number of images of walk, run, and stand were 1416
(avg. 30 frames/seq), 1022 (avg. 21 frames/seq), and 516
(avg. 11 frames/seq), respectively. As the variation within
the static stand styles was minimal, we retained less frames
than the other classes (though sufficient to model the likeli-
hood distributions at multiple levels).

A simple background subtraction technique suited to
thermal imagery was employed to extract the person silhou-
ettes (see Fig. 2). Half of the silhouette images were ran-
domly selected as starting (initial offset) frames for training
and the remaining examples were used as starting frames
for testing the recognition approach.

5.2. Training
Using the training method outlined in Sect. 4.1, we con-
structed the RI hierarchy using the walk, run, and stand
training examples. The actions were initially assigned equal
priors. The MHI temporal binding and moment features of

2 4 6 8 10 12 14
1.3

1.35

1.4

1.45

1.5

1.55
x 10

4

K

B
IC

(a)

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

−0.04

−0.02

0

0.02

0.04

0.06

0.08

F1

F
2

(b)

Figure 4: Likelihood model for training examples of walk-
ing. (a) BIC values for differentK. (b) Mixture model
corresponding to the maximum BIC (atK = 4).

the various exposures were employed as described in Sect.
4.3. An example MHI for an exposure of 9 frames of a per-
son running is shown in Fig. 3.

To construct the optimal likelihood mixture model for
each action class at each level, we randomly partitioned the
training features (at each level) into two sets: one for es-
timating the distributions (using EM) and one for validat-
ing its generality (using BIC). We evaluated models having
K=1–15 distributions. This process was performed three
different times (each time using a random partition). The
K-distribution model with the overall largest BIC was se-
lected as the optimal likelihood distribution for the data at
that level.

In Fig. 4.a, we show the BIC values as a function of
the number of mixture components for the walking training
data at level 1. The resulting mixture model corresponding
to the maximum BIC (atK=4) is shown in Fig. 4.b for the
first two moments. The run and stand classes at this level
resulted in 3 and 2 mixture components, respectively.

The hierarchy for the three-class training data terminated
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in 15 levels (maximum exposure of .5 sec). The stand class
terminated early (as expected) in level 5, and the run class
terminated in level 14 (leaving only walk in level 15). In
Fig. 5, we show the number of unclassified examples given
to each level for each action (failures from the previous
level). We show both the actual number of examples em-
ployed in each level and the number of deleted examples
having no additional frame to make the necessary expo-
sure/MHI for that level. For each action, we see an ex-
ponential drop in the number of unclassified examples as
we progress down through the levels/exposures. This is the
behavior we desire for a rapid recognition system.

As the fraction of recognized class examples at each
level is not uniform across the classes, the initial (equal)
priors were adapted at each level to reflect the new proba-
bilities of encountering the actions. We show the updated
priors at each level (using Eqn. 7) in Fig. 6. Since walk
is the only class in the last level (level 15), it is assigned a
prior of 1.

5.3. Recognition
In Table 1, we present the recognition results for the testing
data in each class, including the average recognition level
(where a reliable match was found), the number of exam-
ples that found a valid RI match, and the error rate. The
percent of testing data for each class that completed and re-
sulted in a valid RI decision ranged from 74–79% (i.e., 21–
26% examples could not form the required exposure/MHI
and therefore the maximum validRpost was selected). The
average level (average exposure time) required by RI to find
a reliable action indicator (for the completed actions) was 7
for walk, 6 for run, and 4 for stand. As expected, the sta-
tionary stand class required less frames to differentiate itself
from walk and run. A histogram showing the distribution of
recognition levels for each action is presented in Fig. 7.

The computed error rates were 6% for walk, 16% for run,
and 13% for stand (see Table 1). The overall Bayes error for
the action context was 12%. These errors were distributed
across different levels/exposures (not limited to one short
exposure length). The results are encouraging given only
very short exposure times to differentiate the actions. In
Fig. 8 we show selected starting frames that were correctly
labeled (reliable action indicators) at level 1, and other start-
ing frames for longer exposures that were unreliable until
reaching their respective action termination levels.

These results were produced from a specifically (yet ran-
domly) selected/partitioned training and testing set at differ-
ent temporal offsets. To give a more generalized analysis,
we generated 10 random split-sample partitions of the en-
tire data set (into training and testing subsets) and averaged
the error results (from 10 different sequential RI hierar-
chies). The average hierarchy depth was 15 levels (min=14,
max=17). The average recognition level for walking, run-

Action Examples Ave. Level Completed Error
Walk 708 7 79% 6%
Run 511 6 79% 16%

Stand 258 4 74% 13%

Table 1: Recognition results for testing data.
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Figure 6: Action priors at each level.

ning, and standing was 7, 6, and 3. The average error for
walking, running, and standing were 8%, 15%, and 10%,
and resulted in an average Bayes error of 11%±.01 (com-
parable to the previous error).

We also compared theRpost reliability thresholding
method to a maximum-likelihood (ML) approach. In this
formulation, we compute the likelihood probability thresh-
old for classAi (at a particular level) by computing the neg-
ative and positive class thresholds with

Tneg = max p(f |Ai, C), ∀f ∈ ¬Ai (14)

Tpos = min p(f |Ai, C) > Tneg, ∀f ∈ Ai (15)

and setTAi = (Tneg + Tpos)/2. A featuref then indicates
the presence of actionAi if p(f |Ai, C) > TAi .

The number of unclassified frames given to each succes-
sive level (failures from the previous level) in the ML ap-
proach were much higher (worse) than with RI. We show in
Fig. 9 the first seven levels for the hierarchies constructed
using ML and RI decision thresholds for the walking data.
The RI approach gives a much faster reduction of examples
as compared to the much slower removal with ML.

We explain the slower ML behavior as the result of ML
enforcing a much more strict thresholding policy. When a
negative example happens to have a particularly high likeli-
hood for a class, the result is elimination of most of the true
positive class examples (having likelihoods smaller than
this negative example). In the case of RI, theRpost sets
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Figure 5: Number of unclassified examples given to each level for (a) walk, (b) run, and (c) stand. Actual count refers to the
number of examples with a valid exposure/MHI at a given level.
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Figure 7: Histogram of recognition levels for (a) walk, (b) run, and (c) stand.

the threshold based on theratio of class posteriors. Even if
likelihoods for positive class examples are lower, they may
still have higherRpost values (much more likely to this class
than to the union of the remaining classes).

6. Summary and Future Work

In this paper, we presented a probabilistic framework for
rapid-and-reliable action detection. The approach deter-
mines the minimum video exposure duration for classifi-
cation by sequentially lengthening the exposure until it can
reliably indicate a particular action. Reliability of a given
exposure for discriminating different actions is evaluated
using a series of posterior class ratios, where a highly re-
liable feature (of the exposure) has a high posterior to one
class and a low posterior to the remaining classes. The re-
liability thresholds for each class are automatically learned
from negative training examples.

Experimental results demonstrated the efficiency of the
approach in terms of reducing the number of training ex-

amples used in each successive level. A maximal exposure
time of .5 seconds was used to recognize people walking,
running, and standing at different styles/offsets/viewpoints,
and resulted in a Bayes error of 11%. TheRpost method
of setting class reliability thresholds was also compared to
an ML approach, which showed that the RI method more
quickly reduced (correctly classified) the training data at
each level/exposure.

In future work, we plan to expand the database to include
more common actions (particularly those related to surveil-
lance). Additionally, we will extend the framework to use
other non-context negative examples and incorporate a like-
lihood validation at each level to rule out context-violating
input and noisy examples early in the search.
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