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Abstract

Many communicative behaviors in the animal kingdom
consist of performing and recognizing specialized patterns
of oscillatory motion. Here we present an approach to the
representation and recognition of these oscillatory motions
based on the categorical organization of a simple sinusoidal
model having very specific and limited parameter values.
This characterization is used to specify the types and lay-
out of computation for recognizing the patterns. Results of
the method are demonstrated with real oscillatory motions
showing the viability of a structured categorical framework.

1. Introduction

Many communicative behaviors throughout the animal
kingdom consist of performing and recognizing specialized
patterns of motion. In this domain, oscillatory movements
are quite prevalent. For example (as shown in Fig. 1), Mal-
lard ducks bob their head up-and-down to a female during
courtship [22], honey bees dance in a circle or figure-8 to
signal a food source to the hive [24], and people nod or
wag their head as a subtle responsive gesture. We present a
simple sinusoidal model with regularized structure that cat-
egorically describes a set of common oscillatory motions. A
simple-to-complex ordering for the motions is created using
the number of model parameters per motion as a measure of
complexity. This organization is reinforced by the general
ubiquitousness of the simpler motions across species, but
not of the complex motions. We also show that human gen-
eration of oscillatory motions suggest a particular form for
the data representation. Results are demonstrated using mo-
tions from a special-purpose tracking system and real video.
The categorical approach is offered as a means to organize
and identify related motion patterns without the necessity of
multiple training examples or individual ad hoc models.

1.1. Periodic motion research

In related work on recognizing periodic motion, much
reliance on Fourier analysis of trajectory information is
used. For example, Polana and Nelson [18] employ a
template-based method registering periodicity values dis-
tributed across a tracked region. Similarly, Liu and Picard
[13] use periodicity templates as a representation to localize
and detect repetitive motion along temporal lines for each
pixel region. Cutler and Davis [5] check a self-similarity
measure between motion frames for detecting periodic mo-
tion. Tsai et al. [23] examine the Fourier transform of
a curvature trajectory to recognize cyclic walking motion.
Other research targeting periodic walking patterns includes
Little and Boyd [12] who examine the phase relationships
of periodic elements derived from optical flow for recogni-
tion and person identification. Non-Fourier approaches to
cyclic motion analysis include Niyogi and Adelson’s [17]
approach of detecting braided walking patterns in spatio-
temporal slices, Seitz and Dyer’s method [21] for view-
invariant analysis using a period trace, and Cohen et al.’s
technique [3] using linear dynamic models. We continue the
development of approaches for the analysis and recognition
of repetitive motion, but instead offer a categorical method
based on strong structural regularities found within a set of
naturally occurring, communicative oscillatory motions.

2. Categorical motion recognition

The success of perception is intimately coupled with the
ability to construct internal model representations whose
assumptions and constraints reflect the proper structure and
regularities present in the world [19]. In other words, funda-
mental to perception is the notion that there is indeed struc-
ture in the world that transfers to the visual image (similar
to ecological optics of [8]). This suggests that if percepti-
ble regularities exist for a class of oscillatory movements,
they would have the effect of making sensory information
of the motions highly reliable for the purpose of categorical
perception. The approach here for recognizing oscillatory



Figure 1. Communicative oscillatory motions in nature. (a) Mallard duck head-bobbing during courtship.
(b) Honey bee dancing in a circle and �gure-8 to signal food. (c) Person gesturing his head 'No'.

motions develops an underlying categorical description for
a set of related motions, where the deep structural form
of the category is presumed to be a parameterized motion
description.

In opposition to a structural categorical approach is anal-
ysis and recognition from prototypes or training examples
of the motions within generic high-dimensional parameter
spaces. For example, simply template-matching trajecto-
ries to a prototype trajectory is an extremely context sensi-
tive approach (even when using DTW). Other prototypical
methods such as HMMs collect examples for a particular
motion to construct a data-specific model for recognition.
Though less sensitive than straight template matching, the
model does not extend to a larger category of patterns. In
methods such as PCA, exhaustive training examples for the
entire class are collected and decomposed into a set of basis
motions capturing the appearance of the data. In the case of
oscillations, if the input primitives are the functional sinu-
soids, then linear decomposition methods do not capture the
true underlying structural parameters (non-linear). Design-
ing such specialized systems as mentioned here results in
having only a set of mimicry devices with no understanding
of the underlying processes and constraints [15].

Instead, with the notion of a category, the structural con-
straints for the class of motion are made explicit, and model
generation for various categorical motions is made simple by
choosing from a set of fixed parameter values and constraints
within the category. Thus creating a new pattern model re-
quires no training, unlike with training-based methods that
demand multiple examples for each new model, and may
be considered a form of one-shot learning [6]. This ap-
proach is also less sensitive to slight deviations in the signal
(e.g. from viewing condition or stylistic performance) for
it has a notion of parameterized structure that can be used
to aid recognition. For example, the analysis can choose to
possibly ignore some parameters and compare the relations
(rather than absolute values) of the remaining parameters.
Training-based approaches using the raw trajectory informa-
tion, on the other hand, will have difficulty if they encounter
a new version of the expected pattern not accounted for
during training. Thus the training class would need to en-

compass all possible structural and stylistic properties that
are capable of being produced.

In this research, we construct a recognition system re-
lying on the structural model parameters within a single
motion category. In Table 1 (col 1), we list a set of oscil-
latory motion patterns that are used for communication in
the animal kingdom and that are commonly found in bird
display behavior (determined after examining the behavioral
literature on several hundred bird species). This motion set
includes 1-D, 2-D, and translation oscillations.

3. Oscillatory motion regularities

Oscillations in general are quite common in biological
systems, especially in animal locomotion [4] and even hand-
writing [9]. Such oscillations are frequently modeled with
sinusoids. We follow suit and model all of the motions in
Table 1 by sinusoids with constraints on form (e.g. a “figure-
8”) and variations in style (e.g. “fast” or “slow”). Also, an
ordering established from the number of model parameters
required to create each pattern (and from biological obser-
vations) can be used to rank the motions from simple to
complex.

3.1. Sinusoidal model

We describe the oscillatory motions with three simple
parameterized sine-wave generators of the form:

x(t) = Ax sin(2�fxt+ �x) +Bxt

y(t) = Ay sin(2�fyt+ �y) +Byt

z(t) = Az sin(2�fzt+ �z) + Bzt

where (x; y; z) is the 3-D Cartesian location of some point
feature over time (perhaps the body in motion or a color
patch on a moving body part). The above description dic-
tates the shape or path of the motion over time, with no in-
fluence from dynamics. Obviously, other more complex and



Amplitude Frequency Phase Translation
Motion Ax Ay Az fx fy fz �x �y �z Bx By Bz # Species

Up-and-down 0 �y 0 - f - - 0 - 0 0 0 14/14
Side-to-side �x 0 0 f - - 0 - - 0 0 0 12/14

Circle �x 0 �z f - f 0 - ��=2 0 0 0 14/14
Spiral �x 0 �z f - f 0 - ��=2 0 (0 : : :] 0 11/14

Undulate 0 �y 0 - f - - 0 - (0 : : :] 0 0 5/14
Loop �x �y 0 f f - 0 ��=2 - [0� �x2�f) 0 0 5/14

Figure-8 �x �y 0 f=2 f - 0 0; � - 0 0 0 6/14
U-shuttle �x �y 0 f=2 f - 0 ��=2 - 0 0 0 2/14

Table 1. Oscillatory motions and sinusoidal model parameters. Model parameters are shown for the
oscillations generated by sinusoidal functions X(t) = A sin(2�ft+�)+Bt. Values � and f correspond to
variable amplitude and frequency values, respectively. Slots with - are non-applicable parameters due to
corresponding zero amplitudes. The last column lists the number of di�erent bird species (total of 14
examined) that exhibit the motion patterns.

dynamic models could be explored, but they too must nec-
essarily follow this fundamental oscillatory behavior. Table
1 shows the parameter settings for this sinusoidal model
needed to characterize our set of oscillatory motions (in
their purest, idealized form).

3.2. Parameter constraints

Looking closely at these parameter values in the table,
we see that the only frequency ratios are f1:1, 1:2g and the
only relative phases (locking �x for reference) are f0, ��

2 ,
�g. In particular, the phase relation for circular motions
(circle, spiral, loop) must obey �x � �y = ��

2 , for figure-8
(1) the relation must be 2�x � �y = f0; �g, and for U-
shuttle ([) the constraint is 2�x��y = �

2 . For looping, the
amount of translationBx is constrained by the product of its
corresponding amplitude and frequency (�x2�f), otherwise
swinging occurs. Although many other distinctive values
could exist for the sinusoids (e.g. �

3 , 4f , etc.), they are not
seen in these oscillatory motions. Such special values for
this model suggest that structural or generative regularities
[25, 14] underlie this class of movement.

3.3. Stylistic parameters

In addition to the structural parameter relations described
above for the qualitative pattern, certain parameter values
can be used for stylistic variation in the motions while not
disrupting the overall form of the pattern. In these mo-
tions, special performance styles can be encoded into the
frequency (fast, slow) and amplitude (shallow, high) pa-
rameters resulting in selective recognition (e.g. as used in
species identity [16, 20]).

3.4. Motion ordering

We can group and order the motions in the category by
relating the common structures and using the number of
active parameters (default values are zero). Clearly, the
up-and-down and side-to-side motions form the simplest
group of “1-D” motion. Noticing a common translation
component, we can group together spiral, undulate, and loop
into “Translation” motion. With a special frequency ratio
of 1:2, we can group together figure-8 and U-shuttle into
“Frequency-doubling” motion. Lastly, this leaves the circle
pattern to be “2-D” motion. We can then rank these groups in
complexity using the number of parameters and constraints
required for each group. The simple 1-D motions can be
combined with an additional phase-difference constraint to
generate 2-D motion, which can be further specialized into
the complex groups of Translation (2-D + translation, except
for undulate) and Frequency-doubling (2-D with frequency-
doubling). These ranked sub-categories are marked in the
horizontal divisions from top to bottom in Table 1.

The values listed in the last column of Table 1 are the
number of different bird species (total of 14 examined, e.g.
ducks, hawks, woodpeckers) which exhibit those motion
patterns. The larger values reflect the commonality of those
motions across the species. The less frequent the type of
motion, the more likely that motion is seen within a species,
but not across many species. Thus we see that the simpler
sub-categories (1-D and 2-D) are more ubiquitous than the
complex sub-categories (Translation, Frequency-doubling).
This is not surprising if we believe that the patterns we
deemed simple require less cognitive and motor control, and
hence should be more universal. We later use these ordered
sub-categories to specify the computations for recognition.



4. Data representation

Before constructing the motion recognition system,a rep-
resentation for the data must be chosen. We require the rep-
resentation to be time-based, rather than purely spatial, due
to the temporal nature of the motion signal and the speed and
frequency tunings involved in perception. However, it is not
obvious whether the patterns should be characterized using
position, velocity, acceleration, etc. Given the choice be-
tween representations, we select the one that best retains the
sinusoidal shape over varying performance conditions. We
examine specifically the trajectories of human arm motion
(also used in later experiments).

Previous studies characterizing human arm movement
have promoted using minimum-jerk profiles (e.g. [7]). In
[1], unrestrained human arm trajectories between point tar-
gets (under varying conditions of speed and hand-held load)
were investigated and shown to have an invariant velocity
profile when normalized for both speed and distance. We
examined oscillatory motions using the arm with alterations
in user, speed, amplitude, and performing limb. The varia-
tions allowed us to measure and compare the stability and
invariance for position and velocity.

To conduct the experiments, we developed a system em-
ploying infrared-light that extracts the 2-D position of a
reflective ball manipulated by the user (See Fig. 2.a). A
computer digitizes the video input, thresholds the images
(See Fig. 2.b), and extracts the centroid of the 2-D ball re-
gion in each image. Example data trajectories generated by
the system are shown in Fig. 2.c,d. The design and output
of this system resemble the optical motion capture systems
used for motion analysis (similar to [11]).

The first of four experiments was comprised of having
three individualseach perform multiple repetitions of a side-
ways figure-8 pattern (1), requiring sinusoidal movement
in both x and y. Figure 3 shows the layered normalized
plots (in both time and amplitude) of half-cycles for the
mean-shifted position and velocity trajectories (first low-
pass filtered). In this experiment, the velocity profiles show
considerably more variance than the position trajectories,
(especially for x0(t)). The remaining experiments varied the
performance with speed (slow and fast), amplitude height
(vertically enlarging the loops), and limb (arm, forearm,
and torso of one person). Throughout the tests, the position
and velocity data retained the basic characteristic shapes as
shown in Fig. 3.

The variance increase in velocity can be clearly under-
stood in the frequency domain as a non-linear multiplier of
the magnitude (increasing to the Nyquist frequency) result-
ing from the derivative calculation:

x
0(t) =

x(t)� x(t� ∆t)
∆t

!

r
2(1� cos(2�f∆t))

∆t2 jX(f)j

(a) (b)
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Figure 2. Infrared tracking system. (a) Person
holding a wand attached to a re
ective ball.
(b) Ball region extracted by vision system. (c)
Spatial pattern. (d) Temporal position trajec-
tories.
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Figure 3. Composite half-cycles for three users
performing a sideways �gure-8 motion (1).
Top row shows normalized x(t) (left) and x

0(t)
(right). Bottom row shows normalized y(t)
(left) and y

0(t) (right).
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Figure-8 U-shuttle

Figure 4. User position trajectories for the mo-
tions using the infrared tracking system. The
x(t) and y(t) trajectories correspond to the solid
and dashed lines, respectively.

Naturally generated sinusoidal motions typically have
more variabilitywith harmonic components, and thus the re-
sultant derivative contains significantly amplified harmonic
noise. The increase in horizontal versus vertical variance in
Fig. 3 may be partially accounted for by the higher degrees
of freedom in the arm for side-to-side motion (elbow and
shoulder) than for up-and-down motion (hinged elbow).

The results of this experiment suggest that the position
information, rather than velocity, is more representative of
the sinusoidal motions. Therefore, we chose to use the
position trajectories to represent the data. Figure 4 shows
the position trajectories for the set of oscillatory motions as
generated by a person using the infrared tracking system.

5. Recognition approach

Our categorical approach to the recognition of the oscil-
latory motions is to estimate the required oscillatory motion
parameters from the input position trajectories, and com-
pare them with parameterized category models. We inter-
pret the constrained parameter relations (Table 1) and the
ordered sub-categories (Sect. 3.4) of the motion patterns
to reflect a series of localized computations assigned to the
oscillatory specializations. The sub-category partitioning
is thus used to specify and organize the types of compu-

tation required for recognition. A initial substrate is first
developed to recognize the simplest 1-D motion patterns
(up-and-down, side-to-side), and is then evolved to full cat-
egorical recognition by successively adding computation to
accommodate the sub-categories of 2-D (circle), Translation
(spiral, undulate, loop), and Frequency-doubling (figure-8,
U-shuttle). This “layering” of computation is similar to the
robotics Subsumption architecture championed by Brooks
[2] for creating complex behaviors from successive levels of
computation. The result is that simple motions require only
basic computation, and more complex motions require ad-
ditional or augmented processing beyond the shared simpler
computations.

Each model from the category consists simply of spe-
cific values for particular sinusoidal model parameters. The
job of recognition is therefore to extract and match only
the necessary parameters from the input data to the model
using only the required computation. The amount and type
of processing depends on the sub-category (complexity) of
the motion pattern to recognize. A structural test confirms
the necessary parameter relationships as given in Table 1,
and if required, a stylistic test matches the parameter values
to specific quantities. For recognition we can perform ei-
ther exhaustive recognition (seeking through all the models
of interest) or context-specific recognition (examining only
certain models of interest).

5.1. Implementation

The approach initiallyextracts a single pattern cycle from
the x(t); y(t) trajectories and estimates the required model
parameters. All trajectories are initially lowpass filtered
using a compact IIR design. Due to the non-linear phase
response associated with IIR filters, we calculated a single
phase difference threshold of 18 degrees for use with the
entire set of motions (determined by the largest disparity
from Frequency-doubling motions).

We designed the system to require only a single cycle of
the pattern and to use the sign changes (i.e. zero-crossings)
in velocity (See Fig. 5.a) to segment the pattern cycles.
After the pattern is extracted, the motion is shifted by the
pattern center to remove the viewing condition. Recognition
therefore can be attempted at these zero-crossing locations
during repetitions, rather than only at the end of each pattern.

To calculate the amplitude, frequency, and phase pa-
rameters (when applicable) for the pattern cycle, Fourier
analysis (FFT) is applied individually to the x(t), y(t) tra-
jectories. An amplitude threshold (3 pixels) is then ap-
plied to “flatten” trajectories not strongly sinusoidal, and a
relative-amplitude scale threshold (10%) is applied to re-
move a small-amplitude trajectory overshadowed by a ref-
erence sinusoidal trajectory (specified by the model). The
computations for matching are locally arranged to reflect the



sub-categorical organization for the motions:
� 1-D motion: up-and-down, side-to-side
To extract a single pattern cycle, the position data for both
trajectories are extracted between the first and third velocity
zero-crossing in the sinusoidal trajectory (x0(t) for side-to-
side, y0(t) for up-and-down). The structural test for these
motions then confirms that only the sinusoidal trajectory has
a non-zero amplitude. The stylistic test matches the actual
frequency and amplitude measurements to model specifics.
� 2-D motion: circle
In this addition, the pattern is extracted between three zero-
crossings, all in the x

0(t) or y0(t) trajectory. The analysis
follows the same pathway as with 1-D motion, but addi-
tionally verifies non-zero amplitudes (�x > 0; �y > 0),
a frequency ratio of 1 (fx = fy), and a phase difference
(�x��y) of��

2 . The stylistic test additionally matches the
amplitudes for both trajectories to the model specifics.
� Translation motion: spiral, undulate, loop
Movements that have a translation component are next incor-
porated. The velocity zero-crossings in the non-translating
trajectory (y0(t) for loop and undulate, x0(t) for spiral) are
used to extract the pattern cycle. To remove the transla-
tion, the linear component between the start and stop points
of the translated trajectory is subtracted. The structural
test includes an additional check for a translation above
(5%) a relative minimum (relative to the translating trajec-
tory amplitude for spiraling and looping, or relative to the
non-translating trajectory amplitude for undulating). The
frequency and phase checks are the same as in 2-D motion
(suppressed for undulate). The stylistic test may addition-
ally look for a specific translation quantity according to the
model specifics (e.g. “tight” vs. “spread-out” loops).
� Frequency-doubling motion: figure-8, U-shuttle
For these motions, there is a change in the frequency ratio
(having one trajectory moving twice as fast as the other)
with no translation. Five velocity zero-crossings are found
in the faster y0(t) trajectory to extract a single pattern cycle
(earlier experiments show this trajectory to be more stable).
In the structural test, the frequency ratio is checked to be 1=2
(fx = 1

2fy), and the relative phase difference (2�x � �y) is
verified to be 0 or � for figure-8 motion, or �

2 for U-shuttle
motion. The stylistic tests are the same as for 2-D motion.

An associated periodicityvalue is also calculated for each
data trajectory to indicate the quality of the sinusoidal fit to
the data as expected by the model. The measure for a
trajectory segment x[t] is a product of a discrete frequency
magnitude ratio and a time-based tail alignment:

Px =

�
1�

max(jX[f 6= f0]j)

jX[f0]j

�
�

�
1�

jx[ta]� x[tb]j

jX[f0]j

�

where f0 is the frequency containing the maximum energy,
jX[f ]j is the magnitude at frequency f , and (x[ta]; x[tb])
are the start and end locations of the cycle. The term
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Figure 5. Implementation �gures. (a) Velocity
zero-crossings of mean-shifted x(t) trajectory
for �gure-8 pattern. (b) Frequency magnitudes
for a single cycle. Periodicity components are
noted.

jX[f 6= f0]j is the maximum magnitude value in the dis-
cretely sampled spectrum other than at the maximum jX[f0]j
(See Fig. 5.b). In the target case of sinusoidal motions, this
residual maximum should be small (even as a harmonic
peak). The first component in Px looks for a single sinu-
soid, and the second component determines how well the
pattern is “closed” (the translation, if any, is removed before
this measure). If there is no motion (i.e. jX[f0]j = 0), the
resultant periodicity defaults to 1. The periodicity values for
both trajectories (Px; Py) are multiplied together to yield a
single periodicity measurement Pxy for the entire motion
pattern. This value is returned as a confidence measure
when a correct structural match is found.

6. Recognition analysis

To examine the recognition capability of this categori-
cal implementation, we analyzed the model confusion using
infrared tracking data to identify the nature of the misclas-
sifications. Next, we tested the recognition system with
trajectories extracted from real video sequences of simple
human and animal oscillations.

6.1. Model confusion

In this framework, the computations allocated to recog-
nize the simple motions are unaware of the additional com-
ponents (or specifications) that exist in the more complex
motions. Thus there may be unexpected results when mod-
els of one complexity (sub-category) are applied to motions
of another complexity. Here we examine the confusion re-
sults of testing each model with an example of each motion
using infrared tracking trajectories produced by two indi-
viduals (none of the authors). For this analysis, only the
structural components in the motions were examined. The



UD SS C S U L F8 US
UD .91 - - - - - - -
SS - .96 - - - - - -
C - - .83 .02 - .59 .16 .13
S - - .20 (.82) - .39 - .04
U - - - - .88 - - -
L - - .65 - - .90 - .83
F8 - - - - - - .74 -
US - - - - - - - .71

Table 2. Confusion matrix. Periodicity values
Pxy of structural matches for models (row) ap-
plied to data (col). Slots with - represent no
structural match. Labels correspond to the or-
dering in Table 1.

results are placed in the confusion matrix in Table 2. Values
shown in the table are the maximum (between the two peo-
ple) periodicity valuesPxy returned when a structural match
was found. The bold values along the diagonal represent the
correct matches.

All the correct matches were found with high confidence
for both people except for the spiral motion. This 3-D mo-
tion was difficult to perform and recognize in 2-D. Only
if we open the phase-difference threshold from 18 to 46
degrees would the spiral model recognize both spiraling se-
quences. After opening the threshold for this model, only
the U-shuttle additionally triggered a response (Pxy=0.07)
by one subject. In the remaining false matches, errors oc-
curred for circle, spiral, and loop models. For the circle
model, the circular translation motions were similar and a
loop of the figure-8 and a swing of the U-shuttle just barely
registered a circular form. The results were similar for the
spiral and looping models.

6.2. Real video examples

One of the simplest and most basic of human gestures
is nodding or wagging the head to indicate a response (e.g.
’Yes’ or ’No’). We applied an automatic face detector and
real-time face tracker [10] to extract the motion of the head
performing these simple gestures. The face model and re-
sults for up-and-down ’Yes’ and side-to-side ’No’ gestures
of the head are shown in Fig. 6.a. The top plots in the row
show thex(t); y(t) position traces and the bottom plots show
the recognition results. The spike magnitudes reflect the pe-
riodicity measures Pxy at the velocity zero-crossings used
to segment the cycles. None of the other models matched
these motion trajectories.

Another main advantage of using a categorical represen-
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Figure 6. Recognition of (a) up-and-down 'Yes'
and side-to-side 'No' head gesture, and (b)
swinging pattern of a gibbon.

tation is that it is easy to create new models to extend the
class of motions. With a single descriptive model (sinu-
soids), we need only change parameter values or constraints
to create a new model. For example, increasing the transla-
tion for looping above a certain value (�x2�f) transforms
it into swinging. We therefore can easily create a swinging
model to add to the class of motions by altering this param-
eter in looping. We applied this swinging model to a video
sequence of a gibbon swinging (brachiating) across a rope
(See Fig. 6.b). The gibbon trajectory was automatically
extracted by thresholding the intensity images and collect-
ing the centroid locations in the sequence of the dark region
(the gibbon). Results in Fig. 6.b show recognition of all
but one portion of a swing, which was due to a phase dif-
ference above tolerance. When all the other models were
tested with this sequence, only the circle model had a re-
sponse (Pxy=0.05). Note that partial occlusions have little
impact on recognition for translation motions. Since the
recognition approach requires only the data between three
velocity zero-crossings (one cycle), a stationary occluder in
the sequence will only disrupt recognition while the tracked
motion is not visible. Once the moving object fully reap-
pears (because of the translation), then only one cycle of the
motion pattern is required for recognition to commence.

7. Summary

We presented a categorical method for the representation
and recognition of a set of oscillatory biological motions.
The approach was motivated by a collection of oscillatory
motions used for animal communication that could be char-
acterized by a simple sinusoidal model with specific and
limited parameter values. By organizing these motions us-



ing the number of model parameters and constraints needed
to describe the patterns, we formed sub-categorical spe-
cializations within the class that were used to specify the
types and arrangement of computation needed to recognize
the motions. The task of recognition was then to estimate
and match the required model parameters and constraints
to the corresponding categorical models. It was determined
by experiment with human arm movements that the posi-
tion trajectories were better suited than velocity to represent
the sinusoidal data. Results using real oscillatory motions
showed that the approach offers a simple and viable means
for the recognition of categories of movements, without the
need for statistical training on large sets of examples.
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