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Abstract

This paper presents a glove-free method for tracking
hand movements using a set of 3-D models. In this
approach, the hand is represented by five cylindrical
models which are fit to the third phalangeal segments
of the fingers. Siz 3-D motion parameters for each
model are calculated that correspond to the movement
of the fingertips in the image plane. Trajectories of
the moving models are then established to show the 3-
D nature of hand motion.

1 Introduction

The importance of human gestures has been greatly
underestimated. We use hundreds of expressive move-
ments every day [2, 9], with many of these movements
pertaining to hand gestures. These movements may
have radically different interpretations from country to
country — one hand gesture may represent a meaning
of “good” in one country, whereas in another country
it may be viewed as offensive [9]. Finger-spelling, a
subset of sign language, permits any letter of the En-
glish alphabet to be presented using a distinct hand
gesture. Using the finger-spelling gesture set, peo-
ple can communicate words to one another using only
hand movements [4]. The media has realized the sig-
nificance of gestures and was experienced in the fi-
nal scene of the movie, Close Encounters of the Third
Kind (Columbia Pictures, 1977), where a human
and alien communicated to each another using hand
movements. McDomnald’s demonstrated the utiliza-
tion of gestures in a 1994 television commercial show-
casing patrons ordering any one of four different meals
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using the appropriate hand gesture. If we are to en-
hance and extend the man-machine interface, it is im-
perative to enable computers to interpret hand move-
ments and to act intelligently according to their mean-
ings.

Tracking hand motion becomes more realistic with
a 3-D, rather than a 2-D, approach. With 3-D infor-
mation, we know the real-world location of the fin-
gers at any time, and can exploit this knowledge to
suit applications without having to concern ourselves
with the weaker and possibly ambiguous 2-D informa-
tion. Two-dimensional ambiguities which may arise
are the 3-D trajectories which, after undergoing per-
spective projection, have the same corresponding 2-D
trajectory. Also, using 3-D models and motion pa-
rameters avoids the need for motion correspondence
for mapping feature points to their correct 2-D trajec-
tory [10, 6], for each feature point is a member of a
distinct model for a particular finger and thus has no
ambiguity in which trajectory it belongs. Therefore
to remove these uncertainties which may arise in 2-D,
we can use 3-D information.

In this paper, we discuss our method for develop-
ing a computer vision system which has the ability to
model and track rigid 3-D finger movement of a glove-
free hand. In the rest of this paper we first identify
the fingers in the image (Section 3.1) and fit a 3-D
generalized cylinder to the third phalangeal segment
of each finger (Section 3.2). Then six 3-D motion pa-
rameters are calculated for each model corresponding
to the 2-D movement of the fingers in the image plane
(Section 4). Experiments are shown with 3-D hand
movements (Section 5).

2 Related Work

Regh and Kanade [11] describe a model-based hand
tracking system called DigitEyes. This system uses
stereo cameras and special real-time image processing



hardware to recover the state of a hand model with 27
spatial degrees of freedom. In order for DigitEyes to
be used in specific hand applications, the kinematics,
geometry, and initial configuration of the hand must
be known in advance. Hand features are measured
using local image-based trackers within manually se-
lected search windows. Rendered models and state
trajectories are given demonstrating the 3-D nature
of their results.

Darrell and Pentland [5] have proposed an approach
for gesture recognition using sets of 2-D view models of
a hand (one or more example views of a hand). These
models are matched to stored gesture patterns using
dynamic time-warping, where each gesture is warped
to make it of the same length as the longest model.
Matching is based upon the normalized correlation be-
tween the image and the set of 2-D view models. This
method requires the use of special-purpose hardware
to achieve real-time performance, and uses gray-level
correlation which can be highly sensitive to noise.

Cipolla, Okamoto, and Kuno [3] present a structure
from motion (SFM) method in which the 3-D visual
interpretation of hand movements is used in a man-
machine interface. A glove with colored markers is
used as input to the vision system and movement of
the hand results in motion between the markers in the
images. The authors use the affine transformation of
an arbitrary triangle formed by the markers to deter-
mine the projection of the axis of rotation, change in
scale, and cyclotorsion. This information is used to al-
ter the position and orientation of an object displayed
on a computer graphics system.

Segan’s [12] Gest is a computer vision system that
learns to identify non-rigid 2-D hand shapes and com-
putes their pose. The system displays a hand in a fixed
position on the screen and the user responds by pre-
senting that same gesture to the camera. The hand’s
pose is calculated and classified. Recognition involves
graph matching and employs a preclassifier to offset
the matching cost. Each gesture is determined from
the hand’s 2-D position, and does not use any motion
characteristics or 3-D feature locations. Gest was used
to control graphics applications, such as a graphics ed-
itor and flight simulator.

Kang and ITkeuchi [8] describe a framework for de-
termining 3-D hand grasps. An intensity image is used
for the identification and localization of the fingers us-
ing curvature analysis, and a range image is used for
3-D cylindrical fitting of the fingers. A contact web is
used to map a low-level hand configuration to a more
abstract grasp description. The grasp is then identi-
fied using a grasp cohesive index. Though this method

uses 3-D finger information, it requires both intensity
and costly range imagery to produce the finger mod-
els.

In an earlier paper [6], we presented a method for
recognizing hand gestures using a 2-D approach. A
finite state machine is used to model four qualitatiely
distinct phases of a generic gesture. If the hand is
found to be in motion to the gesture position, fingertip
trajectories are created using motion correspondence
of the fingertip points in the image plane. Vectors are
then used to approximate the trajectories, and the un-
known gesture is matched to a library gesture using
these vectors. Results show recognition of seven ges-
tures (representatives for actions of Left, Right, Up,
Down, Grab, Rotate, and Stop) without the use of any
special hardware.

3 Finger Modelling

To generate an appropriate 3-D model for the hand,
we require only one intensity image of the user’s hand
in a predefined start position. To begin, we first iden-
tify the fingers within the image and determine each
finger’s axis of orientation. Then generalized cylinders
are fit to specific finger segments. Anatomical knowl-
edge of the human hand is exploited to enhance the
modelling process.

3.1 Identification of Finger Regions

Initially, we constrain the user to begin with the
hand in a known start position (See Fig. l.a). Us-
ing histogram thresholding, the original image is con-
verted into a binary image in which small regions are
removed (See Fig.1.b). We then find a set of points
which can be used to differentiate the fingers from
the rest of the image. Previous approaches for find-
ing feature points involve boundary curvature extrema
[8], interest operators to detect specially colored re-
gions [3], and manual selection [11]. Our approach
uses the knowledge of the start position and natural
design of the hand to automatically determine five fin-
gertip points {7}, }2_, and seven base points { B,, }°. _,
which are used to segment the fingers. Each finger re-
gion is found by applying a connected component al-
gorithm using the respective fingertip and base points
as bounds in the segmentation (See Fig. 1l.c). Once
the fingers have been identified, the axis of orienta-
tion for each finger can be calculated (See Fig. 1.d).
The orientation axis is established by finding the line
in which the integral of the square of the distance to
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Figure 1: Determining Finger Orientation. (a) Start
position of the hand. (b) Binary image resulting
from histogram thresholding and removal of small re-
gions. (c¢) Finger regions found using fingertip points
{Tn}2_, and base points { B, }5,_,. (d) Start position
showing each finger’s orientation axis.

points in the finger is a minimum. The integral to be
minimized over finger F is

E://Frzdmdy, (1)

where r is the perpendicular distance from point (2, y)
to the axis sought after [7]. The fingers and axes will
be used in generating cylindrical representations of fin-
ger segments.

3.2 Cylindrical Fitting

Cylindrical models can be employed to represent
the fingers due to the inherent cylindrical nature of
fingers. A finger as a whole is a non-rigid object, with
the first phalangeal (FP), second phalangeal (SP), and
third phalangeal (TP) segments (only FP and TP seg-
ments for thumb) [13] each exhibiting rigid behavior.
We dismiss the concerns for non-rigidness, occlusion,
and connectedness, and only model and track the TP
segments (fingertip segments) for simplicity. To model
the TP segments, we must know where they are lo-
cated with respect to each finger in the image. In gen-
eral, each FP, SP, and TP segment length occupies
nearly a third of the total finger length. Using this
heuristic, the major axis for the finger can be divided

(a) (b)

Figure 2: TP Models. (a) Index finger’s 3-D cylin-
drical TP model shown with nodes. (b) All five TP

models representing a model set for the hand.

into three parts (except for the thumb, where it is di-
vided into two), designating the TP segment as the up-
per most third of the finger (upper half for the thumb)
along the axis of orientation. A right straight homoge-
neous generalized cylinder (RSHGC)[14] can then be
fit to give a 3-D model to each 2-D TP segment (See
Fig. 2.a&b), such that each model’s projection con-
forms to the actual respective fingertip in the image.
A cross-section shape of an ellipse is used to fit the
natural cross-section of a finger, with semi-major axis
a and semi-minor axis b, having b = f(a) | f(a) < a.

4 Motion Parameter Estimation

Given a set of TP models and a sequence of inten-
sity images in which the hand is moving, we would
like compute the 3-D motion of the fingertips em-
ploying the 2-D motion in the image plane. The
3-D motion of a model is represented in terms of
translation (73, 7y, T,) and counter-clockwise rotation
(wg,wy,w;) around the three coordinate axes based
at the model’s centroid. Our approach incorporates
a direct method using spatio-temporal derivatives (in-
stead of optical flow), a linearized rotation matrix (due
to small motion changes), and a 3-D model (where the
depth is known) to compute the 3-D motion. An over
constrained set of equations is established and solved
for the unknown motion parameters. The locations
of the TP models are continually updated in 3-D to
match the 2-D fingertip movement. Only visible model
nodes can be used in the motion parameter calculation
and can be determined by using together two meth-
ods (surface normals and depth array) for back-side
elimination [1]. This process must be performed each
time the model location is updated to ensure that pre-



viously visible nodes have not become occluded and
vice-versa.

4.1 Formulation of Motion Parameter Es-
timation

Consider the optical flow constraint equation:

fout fyv+ fi =0, (2)
where f, = %’ y = %, fo = %, u = % and

v = %, Assume that the geometry projection from

3-D space onto the 2-D image plane is perspective pro-
jection with camera focal length F'. Then the optical
flow field (u,v) induced by the 3-D instantaneous mo-
tion about the object centroid is given by:

F -X

u = 7 [(TJC twyZe—w.Ye)+ - (T2 + waYe — wac)] . (3)
F -Y

v = 7 [(Ty+szc—mec)+ 7(Tz+mec—wac)] , (4)

where (1y,Ty,T.) is the forward translation vector,
(wg,wy,w;) is the counter-clockwise rotation vector,
(X,Y,7) are the world coordinates, and (X.,Y, Z;)

are the object centered coordinates.
Substituting the above equations for v and v in (2)
and rearranging, we get

F -X
-fi = sz [(Tz twyZe —w,Ye)+ - (T2 + weYe — wac):|

F -Y
+ ny [(Ty tw.Xe—waZo) + T(Tz + wo Yo — wac):|

(5)

which can also be written as

= 5ol [ an]
g BX Vet £y220 4 1YY
F

n [Z2 (foZZe+ foX Xc + nyXc)] wy
[ e g0 - (6)

In this equation, (X,Y, Z) and (X, Y, Z;) are known
from the model, and f;, f,, and f; can be computed
from image pairs. Therefore the only unknowns are
the motion parameters (T, Ty, T;) and (we,wy,w.).
An over constrained set of equations is established us-
ing visible nodes and in matrix form is as follows

[Alx=b

. T .
with x = (T3, Ty, s, we, wy, w;) A linear regres-
sion using least squares is used to approximate the six
unknown motion parameters in x, and is iterated to

account for linearizing. Initially, for calculating the
motion parameters between frame 1 and frame 2, the
visible model nodes record the corresponding intensity
and gradient information from frame 1. Then the mo-
tion parameters are determined using the model nodes
and frame 2. After application of the parameters to
the model from frame 1, the model is now located to
conform to frame 2. For frame 3, a new estimation is
calculated using the model (compensated from frame
1 to frame 2) and frame 3. This process, continues for
the remainder of the sequence.

5 Experiments

Our system was used to track two distinct hand
motions: movement in the XY plane (See Fig. 3 Se-
quence 1), and movement in the X7 plane, i.e. scaling
(See Fig. 3 Sequence 2). These examples are sufficient
to demonstrate the advantage of a 3-D, rather than a
2-D, approach. In each sequence, the locations of the
TP models were updated in each frame to match the
movement of the fingertips in the image plane (See su-
perimposed models in Fig. 3.1a&b and Fig. 3.2a&Db).
In sequence 1, with no depth changes, the 2-D trajec-
tories are shown to be adequate to approximate the
motion of the hand (Compare 2-D and 3-D trajecto-
ries in Fig. 3.1c&d). Sequence 2 demonstrates the
hand changing in depth. This type of motion can be
shown in 3-D (See 3-D trajectories in Fig. 3.2d) and
cannot be distinguished in 2-D, where it appears that
the hand is mainly at rest (See 2-D trajectories in Fig.
3.2¢).

6 Conclusion

In this paper, we presented a 3-D hand mod-
elling and motion estimation method for tracking hand
movements. This approach does not require any glove
or motion correspondence, and recovers 3-D motion in-
formation of the hand. The orientation of the fingers
in a 2-D image are found, and a generalized cylinder is
fit to each finger’s third phalangeal segment. Six mo-
tion parameters for each finger are calculated, which
correspond to the 2-D movement of the fingertips in
the image plane. Three-dimensional trajectories are
then determined from the motion of the models, which
may be used in hand tracking and gesture recognition
applications.
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Figure 3: Sequence 1: XY translation. (la)&(1b)
First and last images with TP models (white). (lc)
2-D motion trajectories. (1d) 3-D motion trajectories.
Sequence 2: X 7 translation. (2a)&(2b) First and last
images with TP models (white). (2¢) 2-D motion tra-
jectories. (2d) 3-D motion trajectories. (Note: bold
hand outline represents initial hand position.)
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