
Gender Recognition from Walking Movements
using Adaptive Three-Mode PCA∗

James W. Davis Hui Gao
Dept. of Computer Science and Engineering

Ohio State University
Columbus, OH 43210 USA

{jwdavis,gaoh }@cse.ohio-state.edu

Abstract

We present an adaptive three-mode PCA framework for rec-
ognizing gender from walking movements. Prototype female
and male walkers are initially decomposed into a sub-space
of their three-mode components (posture, time, gender). We
then assign an importance weight to each motion trajec-
tory in the sub-space and have the model automatically
learn the weight values (key features) from labeled training
data. We present experiments of recognizing physical (ac-
tual) and perceived (from perceptual experiments) gender
for 40 walkers. The model demonstrates greater than 90%
recognition for both contexts and shows greater flexibility
than standard PCA.

1. Introduction
Human movement patterns contain subtle, yet informative,
stylistic variations. Even from point-light displays, people
can recognize the genderof a walker [16, 1, 8, 20],iden-
tify individualsfrom their gait [7, 2], andestimate dynamics
from movement (e.g., estimating the weight of an object
being lifted) [21, 3]. Our overall goal is to develop a com-
putational framework to quantitatively analyze, model, and
recognize human actionstylesfrom the underlying move-
ment patterns. In this paper we focus on the task of rec-
ognizing gender from walking sequences. Our approach
factorizes the motion trajectories of gender-prototype walk-
ers into three-mode PCA components (posture, time, and
gender), which enables us to employ an importance weight
on each trajectory to bias the recognition process using the
most informative (key) features.

The use of trainable feature weights enables gender
recognition under different criteria. Do we wish to
model/recognize thereal (actual) gender or theperceived
maleness or femaleness of the walker? Although men and
women tend to have different gait patterns, there are some
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individuals whose walking styles visually coincide with the
opposite gender [16]. Hence, the physical and percep-
tual gender labels may be in conflict. For automatic vi-
sual surveillance, recognizing thephysicalgender is of most
concern, whereas a model of theperceptualgender appear-
ance is most important to computer animation or for search-
by-example in motion libraries. Understanding the per-
ceived gender is also important for studying which key fea-
tures humans consistently use to discriminate gender. We
address both contexts with a single trainable framework that
learns the set of key features for each context.

The proposed three-mode PCA framework is applicable
to other style variations besides gender. In previous work,
we examined the stylistic movement changes due to car-
rying load and walking pace [12, 10, 11]. A brief result on
physical gender recognition is also presented in [10]. In this
paper, we describe a variant of the three-mode approach for
two styles (gender) and concentrate fully on its application
to the gender recognition task. We also present perceptual
gender recognition results (using perceptual experiments on
human subjects and our computational model) as well as
physical gender results.

In the remainder of the paper, we first discuss related
work in Sect. 2. We then present our expressive three-mode
framework in Sect. 3, including an outline of the general
three-mode factorization technique. In Sect. 4, we examine
our model for both physical and perceptual gender recog-
nition contexts with a large set of 40 walkers. Lastly, we
conclude with a summary of the research in Sect. 5.

2. Related Work

In computer vision, action style approaches include mod-
eling spatial pointing gestures by a Parameterized-HMM
[27], discriminating children from adults by relative stride
information [9], classifying typical from atypical gaits by
considering motion regularities [14], recognizing atomic
activities by PCA and analytical global transformations
[28], classifying human ID and gender from gait using
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SVMs [19], and representing complex motion patterns by
linear combinations of prototype sequences [15].

In computer animation, a Fourier-based approach was
used in [24] to generate human motion with emotional prop-
erties. An HMM with entropy minimization was used by [4]
to generate different state-based animation styles. A factor-
ization of motion-capture data for extracting person-specific
motion signatures was described in [25]. A movement ex-
aggeration model using measurements of the observability
and predictability of joint angle trajectories was presented
in [13]. In [6], the EMOTE character animation system
using LMA effort and shape components was employed to
generate natural synthetic gestures.

Regarding gender recognition, past perceptual experi-
ments with human observers have shown average gender
recognition rates for adult walkers within 63-76% [16, 1,
22]. Much of that work has focussed on determining the
key perceptual features. Static features (e.g., shoulder-hip
ratio or center-of-moment [1, 8]) as well as dynamic fea-
tures (e.g., lateral body sway [20]) have been proposed. In
[16] it was reported that one female walker was identified
as male in most of the trials, illustrating that physical and
perceptual gender do not necessarily coincide.

A two-stage PCA framework for recognizing gender was
recently proposed in [22]. The first PCA decomposed each
walker’s data into its Eigenspace, and a second PCA was
applied to all walker Eigenspaces followed by a linear gen-
der classifier. In comparison to our method, we use a single
three-mode PCA factorization to separate the movements
of prototype female and male walkers into posture, time,
and gender basis sets. This representation enables us to
embed adaptable weights on each motion trajectory in the
sub-space to denote the importance of each trajectory when
estimating the gender. Our approach can be easily adapted
to training data with different gender recognition contexts
(actual vs. perceived), and hence is more flexible than stan-
dard/fixed PCA recognition. This issue of gender contexts
has not been explored in past approaches.

3. Expressive Three-Mode PCA Model

Human movements in the most basic sense can be described
as a body posture changing over time (two modes: posture,
time). When considering stylistic movement variations, due
to gender, we have a total of three modes to describe the
action: posture, time, andgender. We exploit the tri-modal
nature of stylistic motion trajectories with an efficient three-
mode PCA factorization.

3.1. Three-Mode PCA

As an extension of the traditional two-mode PCA, three-
mode factorization [23] produces three orthonormal basis
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Figure 1: (a) Three-mode arrangement of two gender pro-
totypes. (b) Three-mode factorization of gender prototypes.

sets for motion trajectories arranged in a 3-D cube. For gen-
der recognition, the style dimension corresponds to a binary
gender assignment ofFEMALE or MALE . We form a cube
Z using two prototype walkers constructed by averaging the
walking examples in each gender class. The walking data
are first pre-aligned (see Sect. 4) using cycle extraction (at
the same phase), height normalization, and time normaliza-
tion toN frames.

ForM trajectories of each walker, each gender prototype
is represented as a matrix of sizeM ×N . We place the two
prototypes into the first and second (last) frontal plane of the
cube, and center the cube (mean-subtract) along the gender
mode. The result is a gender cubeZ̄ of sizeM ×N × 2 for
the mean-subtracted female and male prototypesZ̄f , Z̄m

(see Fig. 1.a).
A three-mode factorization of̄Z produces three or-

thonormal basis setsP , T , andG that span column (pos-
ture), row (time), and slice (gender) dimensions (see Fig.
1.b). The reconstruction of̄Z (flattened) can be written as

[Z̄f |Z̄m ] = PC(G> ⊗ T>) (1)

where⊗ is the Kronecker product andC is the core matrix
[17]. The three basis sets can be solved from three different
flattening arrangements of̄Z

Posture: P = colSpace( [ Z̄f | Z̄m ] ) (2)

Time: T = colSpace( [ Z̄>f | Z̄>m ] ) (3)

Gender: G = rowSpace( [ ~Zf | ~Zm ] ) (4)

whereZ̄>{f,m} is the transpose of̄Z{f,m}, and~Z{f,m} is the

rasterized column vector of matrix̄Z{f,m} (concatenation
of trajectories into a single column vector). The desired
column and row spaces in Eqns. 2-4 can be found using
Singular Value Decomposition (SVD). Note that only a few
components inP andT are typically needed to capture most
of the variance in the data, and that no two of the three ba-
sis sets can be produced within a single two-mode (matrix)
SVD factorization of a flattened̄Z.
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Using the two gender prototypes,̄Zf and Z̄m, the
normalized gender basis is constrained to beG =
[−1, 1]>/

√
2, signifying the female (−1√

2
) and male (1√

2
)

genders. The core matrixC can be solved by re-arranging
Eqn. 1 as

C = P>[Z̄f |Z̄m ](G> ⊗ T>)> (5)

Related methods for solving the three-mode factorization
can be found in [18, 26].

3.1.1. Prototype Reconstruction

The three-mode formulation in Eqn. 1 can also be used to
individually reconstruct the gender prototypesZ̄f andZ̄m

with
Z̄{f,m} = PCg{f,m}T> (6)

where the gender parameterg{f,m} = ±1√
2

signifies the gen-

der (−1√
2

for female, 1√
2

for male). Rewriting Eqn. 6 as
a summation of three-mode basis elements, we can isolate
the gender parameter from the remaining factored terms

Z̄ij{f,m} =
s∑

p=1

t∑
q=1

PipCpqg{f,m}Tjq (7)

= g{f,m}

(
s∑

p=1

t∑
q=1

PipCpqTjq

)
(8)

= g{f,m} · αij (9)

where the indicesi, j correspond to elements in the re-
spective posture and time dimensions (1 ≤ i ≤ M , and
1 ≤ j ≤ N ).

3.1.2. Gender Parameter Estimation

Following Eqn. 9, the unknown gender parameterĝ for a
new walkerẑ (after subtracting the model mean) can be es-
timated by finding the value of̂g that minimizes the sum-
of-squared-error (SSE) reconstruction error

F =
M∑

i=1

N∑

j=1

(ẑij − ĝ · αij)2 (10)

Setting the partial derivatives ofF to zero and re-arranging
the equation, the resulting gender parameterĝ is given by

ĝ =

∑
i

∑
j ẑij · αij∑

i

∑
j α2

ij

(11)

where essentially the gender parameter is computed by pro-
jecting ẑ onto the normalizedαij basis elements. The fi-
nal gender label can be assigned by examining the sign of

ĝ, choosingFEMALE if it is negative andMALE if positive
(i.e., selecting the nearest centered gender prototype).

The above gender estimation in Eqn. 11 could have
equivalently been achieved by rasterizing the gender pro-
totype data into aMN × 2 matrix and performing a stan-
dard two-mode PCA to estimate the gender parameter. We
will show that the prototype three-mode formulation (Eqn.
11) will enable us to easily embed adaptable weightswithin
the PCA representation to influence the direct computation
of the gender parameter (the projection coefficient). Alter-
natively, all walking examples could be employed in a ras-
terized two-mode PCA and have weights applied to the ba-
sis vectors, but these weights would generally not have any
correspondence back to the original (and distinct) motion
trajectories in which certain key features may reside.

3.2. Extended Three-Mode PCA

The SSE minimization in Eqn.10 gives significant influence
to trajectories having large magnitude differences from the
model-mean. But perhaps only certain trajectories carry
the true expressive information regarding the gender dif-
ferences. Furthermore these trajectories could have smaller
magnitude differences, which unfortunately would be atten-
uated in a standard SSE estimation.

To handle these problems, we introduce a weighting fac-
tor on each trajectory to denote its impact for estimating the
context-based gender assignments. We update Eqn. 10 as

F =
M∑

i=1

Ei

N∑

j=1

(ẑij − ĝ · αij)
2 (12)

with a positive weightEi on each of theM trajectories. The
gender parameter can then be estimated using

ĝ =

∑
i Ei

∑
j ẑij · αij∑

i Ei

∑
j α2

ij

(13)

=
∑

i Ei∆i∑
i Ei

∑
j α2

ij

(14)

=
M∑

i=1

Ẽi∆i (15)

where ∆i =
∑N

j=1 ẑij · αij . As the denominator∑
i Ei

∑
j α2

ij in Eqn. 14 is a constant for a given set of

Ei, we fold this term into the “expressive weights”̃Ei in
Eqn. 15. Note that if we set each expressive weight to
(
∑

i

∑
j α2

ij)
−1 in Eqn. 15, the resulting gender parame-

ter estimation reverts to the previous SSE method (Eqn. 11)
which is equivalent to standard PCA. We next need to learn
the appropriate values for the expressive weights.
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3.2.1. Learning Expressive Weights

Our approach to learning the expressive weightsẼi is to
minimize a second error function that compares the com-
puted gender parameterŝg (using Eqn. 15) with pre-
assigned gender parameter values (ḡ = ±1√

2
) for K different

training examples

J =
K∑

k=1

(ḡk − ĝk)2 (16)

=
K∑

k=1

(ḡk −
M∑

i=1

Ẽi∆ik)2 (17)

The expressive weights in Eqn. 17 can be solved linearly,
but this requires as many training examples as the number
of expressive weights (K ≥ M ). It would also be difficult
to constrain the weights to be positive. Instead, we employ
a fast iterative gradient descent algorithm [5] of the form

Ẽi(n + 1) = Ẽi(n)− η(n) · ∂J

∂Ẽi

(18)

with the gradients∂J
∂Ẽi

computed as

∂J

∂Ẽi

= −2
K∑

k=1

∆ik(ḡk −
M∑

z=1

Ẽz∆zk) (19)

The learning rateη is re-computed at each iteration (via
interpolation of the error function) to yield the best incre-
mental update. The expressive weights are initialized to the
default SSE formulation,̃Ei(0) = (

∑
i

∑
j α2

ij)
−1, and are

confined to be positive in each iteration.
Following the termination of Eqn. 18, the gender param-

eter for a walker can be estimated with Eqn. 15 using the
newly learned expressive weights. As before, the sign func-
tion can be used to threshold the estimated gender parame-
ter ĝ to compute a final gender assignment (-1 =FEMALE,
+1 = MALE ). With non-uniform values for the expressive
weightsẼi, the approach is capable of emphasizing select
trajectories and producing non-SSE gender parameter esti-
mations according to a specific recognition context.

4. Experiments
For our experiments, we first examined the gender recogni-
tion capability of human observers with our data set. Then
we tested our adaptable PCA model for recognizing gender
in both physical and perceptual contexts.

To focus on the general mechanism for genderrecogni-
tion (rather than extracting trajectories directly from video),
our data set was collected using motion-capture. Gender
recognition has widely been, and continues to be, studied

(a) (b)

Figure 2: Point-light images of a (a) female walker and (b)
male walker.

using point-light trajectories. Though we employ motion-
capture trajectories in our experiments, our general learn-
ing and recognition approaches are an important aspect of
computer vision for motion understanding. In future work,
we plan to incorporate a video-based human body tracker
as input.

Our data set includes 40 adult walkers (20 female and
20 male) collected by N. Troje at the BioMotionLab of the
Ruhr-University in Bochum, Germany, where ten gait cy-
cles of each walker were recorded with a Vicon motion-
capture system. We used 13 point-lights for each walker,
where 10 were markers located closely to the major limb
joints and 3 were virtual points created by averaging four
head markers (into 1 head point) and two hip markers on
the left and right side (into 2 hip markers).

Each walking sequence was low-pass filtered (cutoff
6 Hz) and rotated to face the forward direction. For
each point-light walker, we normalized the height using
its average tibia length. We then extracted one walk cy-
cle from each sequence (at the same phase) by detect-
ing cyclic curvature peaks in the left-knee trajectory, and
time-normalized each cycle toN = 50 frames (using
spline interpolation) to remove any influence of walking
speed. Any discontinuity between the last and first frame
for each trajectoryx(t) was removed by distributing the er-
ror δ = x(1) − x(N) throughout the trajectory as̃x(t) =
x(t) + (t − 1) · δ/N , 1 ≤ t ≤ N . Lastly, the 3-D trajecto-
ries were orthographically projected into 2-D at the frontal
view (the best gender discrimination view [22]). Example
point-light images are shown in Fig. 2.

4.1. Perceptual Recognition
A computer program was implemented to collect human
judgments of the gender for the 40 walkers. Each point-
light walker (in random order) was presented on a 21 in.
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CRT monitor (1280× 1024) and looped until the observer
selected a gender label using the keyboard (‘F’ forFEMALE

or ‘M’ for MALE ). The participant was seated at a typical
working distance, and no time restriction was enforced.

Each 50-frame walking cycle was rendered as black dots
against an off-white background at 36 FPS, corresponding
to a cycle time of 1.4s (maximum cycle time for all 40
walkers). The height of each walker was scaled to 70% of
the screen resolution height. Additionally, the root of each
walker (center of two hip markers) was randomly positioned
within a small circle at the center of screen (radius of 10%
the screen resolution height) to prevent any explicit spatial
comparison.

Fifteen university students (5 female, 10 male) were re-
cruited as participants for the experiment. The average gen-
der recognition rate was 69%, which is within the range of
previously reported results [16, 1, 22].

We additionally computed agender consistencyvalue for
each walker. The gender selection for each walker (from
each participant) was assigned a value of−1 for FEMALE

and+1 for MALE . We computed the gender consistencies
by averaging the±1 values assigned to each walker by the
15 participants. A consistency value of -1 corresponds to
total agreement of the walker asFEMALE, a value of +1
corresponds to total agreement asMALE , and a value near
zero corresponds toAMBIGUOUS. We present the resulting
gender consistencies for the 40 walkers in Fig. 3.

Three walkers (#1, #4, #34) were unanimously labeled
by all 15 observers. Interestingly, one of them (#4) was a
female that was perceptually labeled as male by all partici-
pants. This clearly demonstrates the potential differences
between the perceived and actual gender. Several other
walkers were difficult to label (consistency values near 0).

4.2. Three-Mode PCA: Physical Gender

In this experiment, we examined our expressive three-mode
approach for recognizing the physical gender of the walk-
ers. For training, we assigned a gender parameter value of
−1√

2
to thetrue females and1√

2
to thetruemales.

To avoid overfitting the model, we employed a leave-
one-out cross-validation technique on the walkers. We var-
ied the percent modal fit for the basis setsP and T (us-
ing the least number of components in each basis to cap-
ture the desired percent of variance) of the prototypes (com-
puted from 39 training examples). The optimal expressive
weights (see Fig. 4) were computed by averaging the 40
sets of weights for the modal fit at 75%, which had the low-
est cross-validation testing error of 25%. The ordering of
the 26 weights correspond to{HEAD:(1-2),RIGHT-ARM:(3-
8), LEFT-ARM:(9-14), RIGHT/LEFT-HIP:(15-18), RIGHT-
LEG:(19-22), andLEFT-LEG:(23-26)}. Some weights were
zero, signifying that they were not key features.

0 5 10 15 20 25 30 35 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Walker

C
on

si
st

en
cy

Femaleness

Maleness

Figure 3: Gender consistency values for the 40 walking se-
quences (females: #1-20, males: #21-40)

Next we computed two prototypes from all 40 walkers
and constructed a single three-mode factorization at the se-
lected modal fit. The resulting three-mode basis captured
98% of the variance in the gender prototypes. The basis sets
P andT were of dimension26× 3 and50× 3, respectively
(the coreC was therefore of size3× 3).

To evaluate this model with the average expressive
weights, we first computed the gender parameters for all 40
walkers using Eqn. 15, and compared them to the±1√

2
phys-

ical gender values assigned to the training data (see Fig.
5.a). Thresholding the gender parameter values using the
sign function produced a 92.5% classification rate.

For comparison, we employed the same cross-validation
technique on a three-mode model without any expressive
weights (i.e., the default SSE estimation). The best modal
fit occurred at a 50% fit with a testing error of 30%. This
resulted in a much noisier gender parameter estimation for
the overall model of 40 walkers (see Fig. 5.b) and yielded a
much lower 70% classification rate. The gender estimations
with our expressive model appear much closer to the desired
gender values (average difference = .31) than the alternative
SSE estimations (average difference = 1.07).

4.3. Three-Mode PCA: Perceptual Gender
An advantage to our framework is that the model can eas-
ily adapt to differently-labeled training data (different con-
texts). To demonstrate this capability, we trained our model
to produce gender estimations similar to the classification
results produced by the human observers.

We first thresholded the gender consistency values from
the perceptual experiment (Sect. 4.1) to label the walkers
with their perceived gender. For each walker in the training
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Figure 4: Average expressive weights for physical gender.

set, we assigned a perceptual gender label of−1√
2

(FEMALE)

if it had a negative gender consistency or1√
2

(MALE ) other-
wise. The perceptual training set resulted in 15 “perceived
females” (14 true females, 1 true male) and 25 “perceived
males” (19 true males, 6 true females).

We used the same cross-validation technique outlined in
Sect. 4.2 to construct the optimal expressive PCA model.
The two prototypes were constructed using the perceived-
female and perceived-male examples (not the true gender).
The expressive weights (see Fig. 6) were generated by av-
eraging the 40 sets of expressive weights computed at the
cross-validation modal fit of 80%, which had the smallest
testing error of 27.5%. The three-mode basis (using all ex-
amples for the prototypes) captured 98% of the variance in
the two gender prototypes. The basis setsP andT were of
dimension26× 4 and50× 4, respectively (the coreC was
of size4× 4).

The gender parameter results for the expressive model
are shown with the target values in Fig. 7.a. Threshold-
ing the gender parameter values using the sign function
produced a 90% classification rate. For comparison, we
again computed the optimal three-mode model without any
weights (SSE estimation) for the perceptual data using the
cross-validation technique. The best modal fit occurred at
50% with a testing error of 42.5%. The results showed nois-
ier gender estimations (see Fig. 7.b). The thresholded gen-
der parameters produced a lower 77.5% classification rate.
As in the previous physical gender context, our expressive
model produced gender parameter values much closer to the
desired perceptual values (average difference = .33) than did
the alternative SSE-based approach (average difference =
.68).
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Figure 5: Physical gender estimation. (a) Expressive three-
mode. (b) Non-expressive SSE three-mode. Walkers 1-
20:female, 21-40: male.

4.3.1. Consistency Weighting

To account for the gender ambiguity that occurs for some
walkers (having gender consistency values near zero), we
can attenuate the influence of those walkers during the
learning phase for the expressive weights to give more em-
phasis to the remaining walkers with high consistency mag-
nitudes. Given the set ofK training walkers and their as-
signed perceptual gendersḡk, we slightly alter the previ-
ous matching error function (Eqn. 17) by using their con-
sistency magnitudesωk to bias the minimization procedure
to those examples having more reliable gender assignments
across the observers

Jp =
K∑

k=1

ωk · (ḡk −
M∑

i=1

Ẽi∆ik)2 (20)
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Figure 6: Average expressive weights for perceptual gender.

The corresponding perceptual gradient is then

∂Jp

∂Ẽi

= −2
K∑

k=1

ωk∆ik(ḡk −
M∑

z=1

Ẽz∆zk) (21)

This new gradient is used as before in the gradient descent
procedure (Eqn. 18) to determine the appropriate expressive
weights for the perceptually-labeled walkers.

With this new approach, the perceptually ambiguous
walkers will be mostly disregarded when learning the ex-
pressive weights. Therefore, an error for a highly ambigu-
ous walker should not be as equally counted as the other
consistently-labeled walkers. We correspondingly modify
the standard recognition error rate to now be weighted by
the consistency magnitudes

Error =
∑

k ωk[Sgn(ḡk) 6= Sgn(ĝk)]∑
k ωk

(22)

Using the new perceptual gradient function and weighted
error calculation in the cross-validation technique, the sin-
gle optimal expressive model was computed and tested on
the walking data. The resulting expressive model pro-
duced the weighted classification rate of 95.5% for all 40
walkers (the corresponding optimal SSE model produced a
weighted classification rate of 88%).

5. Summary and Conclusion
We presented a computational approach for recognizing the
gender of walking people using an efficient and adaptable
three-mode PCA framework. The approach initially fac-
torizes prototype female and male walkers into their three-
mode basis sets representing the body posture, temporal tra-
jectories, and gender changes. This multi-modal decom-
position of the data is suitable for incorporating expressive
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Figure 7: Perceptual gender estimation. (a) Expressive
three-mode. (b) Non-expressive SSE three-mode. Walkers
#1-15: perceived-female, #16-40: perceived-male.

weights on motion trajectories to bias the model estimation
of gender. The method embeds an expressive weight on
each trajectory in the sub-space and automatically learns the
necessary weight values from gender-labeled training data.
One advantage of this approach is that it can adapt to differ-
ent recognition contexts (physical and perceptual gender)
for the same underlying data. This concept has not been
addressed in the gender recognition literature.

Our expressive three-mode PCA model produced a
recognition rate of 92.5% for 40 walkers (20 female, 20
male) labeled with their physical (true) gender. A gender
classification experiment using 15 participants resulted in a
69% perceptual classification rate (within the range of pre-
viously reported results). Trained using the dominant per-
ceptual label for each walker, the expressive PCA model
produced a 90% recognition rate. An additional model
trained with consistency-weighted (perceptual confidence)
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examples produced a higher 95.5% weighted classification
rate. The method demonstrated that our approach can suc-
cessfully and automatically adapt to different gender con-
texts using expressive weights, and that it outperforms a
standard three-mode (or rasterized two-mode) PCA model
with no expressive weights.

Gender recognition has been an active research domain
for several years. We proposed a new computational ap-
proach that could potentially provide insight into the fea-
tures most useful for classification (perceptual and compu-
tational). In future work we plan to explore this possibility
further by examining different feature representations (other
than motion trajectories) for multi-phase (non-periodic) ac-
tivities. We also intend to incorporate a video-based human
body tracker and apply the three-mode PCA framework to
other recognition (video surveillance) and synthesis (com-
puter animation) tasks.
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