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Abstract. We present a novel technique to accurately map the complete
field-of-coverage of a camera to its pan-tilt space in an efficient manner.
This camera model enables mapping the coordinates of any (x, y) point
in the camera’s current image to that point’s corresponding orientation
in the camera’s pan-tilt space. The model is based on the elliptical locus
of the projections of a fixed point on the original focal plane of a moving
camera. The parametric location of this point along the ellipse defines the
change in camera orientation. The efficiency of the model lies in the fast
and automatic mapping technique. We employ the proposed model to
generate panoramas and evaluate the mapping procedure with multiple
PTZ surveillance cameras.

1 Introduction

Pan-tilt-zoom (PTZ) cameras are extensively used in wide-area surveillance ap-
plications. Tracking, monitoring, and activity analysis in such environments re-
quire continual coverage of the entire area by these cameras. While most com-
puter vision algorithms such as object detection, tracking, etc. work on the
Cartesian x-y space of images captured by these cameras, the movement and
control of these cameras take place in an angular pan-tilt space. Therefore, in
order to relay information across these spaces to comprehensively utilize the
pan-tilt capabilities, a fast and accurate pixel to pan-tilt mapping model is re-
quired. For example, an active tracking system would require such a real-time
mapping in order to continually track a target with a PTZ camera to keep the
target centered in its view as it moves across the scene. Such a mapping would
also need to be employed when constructing models for pedestrian activity pat-
terns across an entire scene and not just in local views. In these applications,
when processing images captured by the camera, there is a need to map the
local image pixel coordinates to the corresponding pan-tilt orientations in world
space.

Although various complex camera models have been proposed for these tasks [1–
5], we expand on the preliminary work of [6] and propose a real-time, reliable
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Fig. 1. High resolution spherical panorama generated using the proposed model show-
ing complete field-of-coverage of a PTZ camera. Inset: A single view from the camera.

and completely automatic PTZ mapping model. We theoretically derive the min-
imum formulation necessary to map any arbitrary point on the focal plane of a
PTZ camera to its corresponding pan-tilt orientation, based on the current pan-
tilt value of the camera. The principal idea that we exploit here is that the locus
of a point on a fixed image plane, as the camera pans, forms an ellipse from which
the pan and tilt can be recovered. Our formulation shows that an alternative
(and simpler) linear field-of-view based mapping approach is not sufficient while
at the same time demonstrates that more complex methods are not required.
Therefore, while the proposed model we derive is computationally simple, it is
not simplistic in its functionality (as established in the experiments).

Important contributions of the work here (beyond [6]) include 1) new ex-
tensions to the previous PT-only model to propose a complete pan-tilt-zoom
mapping model, 2) studies and experiments analyzing the variations between fo-
cal length and zoom in the mapping, 3) quantitative experiments and discussion
on the model (previous work was only qualitative), 4) new experiments demon-
strating robustness with different brands of cameras (previous work was with one
type of camera), and 5) new qualitative and quantitative experiments within a
full pan-tilt-zoom active tracking application. Due to the nature of the proposed
approach, extensive experiments are required and presented. Our resulting new
system is also completely automatic (unlike the previous) which is important for
scalability in large distributed camera networks.

The rest of the paper is organized as follows. In Sect. 2, we discuss previous
approaches to the problem addressed. Section 3 describes the proposed model
in detail and Sect. 4 presents the experiments. We discuss the contributions of
this work in Sect. 5 and conclude with a summary in Sect. 6.

2 Related Work

Even though in commercially available cameras the pan-tilt motor center does
not coincide with optical center of the camera, most existing camera models as-
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sume idealized mechanics where the optical center and geometric center of the
camera are collocated, and the rotation axes are aligned [7–11]. A simple model
is also assumed in [12] and requires bundle adjustment to obtain global im-
age alignment in the generated panoramas. In [2], they propose a more complex
model where they employ a highly non-linear relationship between image coordi-
nates and world coordinates which is then solved for a solution by iterating until
convergence. While [1] accounts for rotations around arbitrary axis in space, in
order to robustly calibrate all camera parameters it requires a controlled envi-
ronment using LED marker data. Moreover, this technique employs an iterative
minimization technique that is computationally expensive. Similarly [4] employs
a search mechanism to minimize an SSD matching score function, which again
is computationally expensive. In [3], a correction matrix is used to continuously
update the camera parameters with the latest pan and tilt information as the
camera moves. However, this information is not precise enough for pixel-level
mapping.

This paper extends the initial work introduced by [6] by proposing techniques
for a fully automatic and complete pan-tilt-zoom mapping model. The main
advantage and novelty of the proposed model is that it is independent of the
aforementioned problems since it “simulates” a virtual camera located at the
optical center. The pan-tilt space is oriented with respect to this virtual camera
at the optical center, not the actual camera geometric center. Even though the
geometric center is displaced, the variation/change of pan and tilt of this virtual
camera at any instant is consistent with the pan and tilt of the actual camera.
See supplemental slides. Since our model depends on changes in pan and tilt
angles, the images could be considered to have been taken from this virtual
camera. By presenting this compact model with thorough and robust results, we
demonstrate that the excess computations in the previous work are unnecessary.

3 Proposed Camera Model

In this section, we describe the proposed mapping model (initial work is pre-
sented in [6]), techniques to automate the model parameter calculations, and
analysis of the model with variations in zoom. The main idea behind the mapping
model is that the locus of a point along the principal axis on a fixed infinitely-
extended image plane as the camera pans, is an ellipse. We wish to compute the
changes in pan and tilt along this ellipse to map the image point (x, y) to its
corresponding (pan, tilt) orientation.

3.1 X-Y to Pan-Tilt Mapping

The mapping model presented here is based on the camera geometry shown in
Fig. 2. In Fig. 2(a), O represents the optical center of the camera whose principal
axis (ray ON) intersects the image plane I at its principal point R, at distance
f (focal length). Notice that as the camera pans, the projections of successive
principal points onto the original extended image plane I form the ellipse (e1)
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Fig. 2. Camera Geometry [6]. (a) Overall geometry of the camera model. (b) Calcu-
lation of change in pan δθ. (c) Calculation of minor axis b (c0 is a circle of radius b
centered at C and parallel to the ground plane).

centered at C. This can also be seen as the bounded case of intersection of a
conic by an oblique plane I. Similarly, the locus of an arbitrary point P on the
image plane I as the camera pans is also an ellipse (e2). We now wish to compute
the change in pan (δθ) and the change in tilt (δφ) that would center the point
P (after panning and tilting the camera), given the camera’s current (pan, tilt)
location and P ’s image coordinates (x, y).

From Fig. 2(b), the desired change in pan δθ is ∠PMQ, which is the angle
between planes MPC and MQC and is computed using

δθ = tan−1
(

x

y · sinφ+ f · cosφ

)
(1)

Therefore, the change in pan is essentially a function of the image coordinates
(x, y), the focal length (f), and the current tilt (φ) of the camera.

Further from Fig. 2(a), in order to calculate the change in tilt δφ, we need
to compute ∠P ′OR. In terms of the parametric equation of an ellipse, we can
represent point E as (a cos(t), b sin(t)). Also note that since the two ellipses e1
and e2 are concentric, the values of this parameter t at E (for e1) and at P (for
e2) are equal. If A and B are the major and minor axes of the outer ellipse e2,
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from Fig. 2(a) we see that

A · cos(t) = y + a (2)

B · sin(t) = x (3)

Using the relation A
B = a

b , we compute the value of t as

t = tan−1
(
a

b
· x

y + a

)
(4)

Therefore, using Eqn.(2) and Eqn.(4), we get

A =
y + a

cos
(

tan−1(ab ·
x
y+a )

) (5)

This gives the required angle ∠P ′OR (δφ) as

δφ = tan−1
(
A− a
f

)
(6)

Again, we need only the (x, y), the tilt (φ), and the focal length f to compute
the required change in tilt δφ.

As seen from Eqn.(1) and Eqn.(6), the changes in pan and tilt depend on the
current tilt (φ) and the pixel location (x, y). Therefore, a simple linear mapping
of (x, y) to (θ,φ) based only on the proportional change in the sensor field-of-view
is insufficient.

3.2 Automatic Calculation of Focal Length

For this model, the focal length of the PTZ camera f (in pixels) is needed.
Moving beyond the manual method of [6], we propose an automatic technique
to calculate f based on SIFT keypoint matching across adjacent overlapping
images and using RANSAC for elimination of outliers.

We begin by pointing the camera to two locations which have overlapping
coverage and whose pan-tilt locations are [(θ1,φ1) and (θ2,φ2)]. We then match
SIFT keypoints [13] in the image overlap area (see Fig. 3(a)). For each such
matched keypoint in the first image, we have Eqn.(1) to compute its change in
pan (δθ1) from θ1 (in terms of f). For each corresponding matched keypoint
in the second image, we again have Eqn.(1) to compute its change in pan (δθ2)
from θ2 (also in terms of f). Since we know the actual pan locations of the center
of the two images (θ1 and θ2), we can enforce the constraint (with θ2 > θ1) that

δθ1 + |δθ2| = θ2 − θ1 (7)

This gives us an equation from which f can be solved. We repeat the above
technique for other such pairs of images obtained by moving the camera to differ-
ent overlapping pan-tilt locations. However, since the SIFT keypoint finding and
matching may not be perfect, we use the well known RANSAC algorithm [14] to
perform a robust estimation of the focal length and eliminate outliers using mul-
tiple matched keypoints in the images. This process allows us to automatically
calculate a robust estimate of the focal length.
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(a) (b)

Fig. 3. (a) SIFT keypoints matched across overlapping regions of an adjacent pair of
images. (b) Variation of focal length with zoom for Sony and Pelco cameras.

3.3 Variation with Zoom

A key component of the mapping model is the PTZ camera’s focal length and
in order to generalize the model to all zoom levels, we need to know the interre-
lationship between focal length (f) and zoom (z). Therefore, we next model the
effect of zoom and analyze the variation of f with z.

We perform the automatic focal length calculation described in Sect. 3.2 at
different zoom levels of the cameras. Here, we choose the range of zoom=1 (wide
field-of-view) to zoom=12 as the upper limit of zoom=12 has been observed
to be more than sufficient for standard surveillance applications. Once the focal
length values for all the zoom levels are calculated, we compute a piecewise cubic
fit to this data. Figure 3(b) shows the variation of focal length with zoom for two
different brands of PTZ cameras. This function permits the use of an arbitrary
zoom level in our model by mapping any zoom value to its corresponding focal
length so that it can then be utilized in the (x, y) to (pan,tilt) mapping.

To determine the smoothness and accuracy of the learned f -z function, we
employ an object size preservation metric. A uniform colored rectangular object
is placed in the center of the camera’s view and the object’s motion is restricted
to be along the line-of-sight of the camera. Keeping the camera’s pan-tilt (θ,φ)
fixed, the camera’s zoom is automatically adjusted so that the size of the object
at any instant during its motion remains the same as in the first frame (w × h
pixels). To do this, the object’s upper-right corner point (x,y) is detected at every
frame (using for example, Canny edge detection) and the point’s difference in
pan (δθ) from the home pan (θ) is calculated using Eqn.(1). Since the size of
the object is to remain the same and the object is always centered, the locations
of all of its corners should also remain constant (±w/2,±h/2). Therefore, in
order to scale the location of the upper-right corner point from (x,y) back to
(w/2, h/2) by adjusting the zoom, the new focal length needed for the camera is
calculated using the values δθ, φ, w/2, and h/2 in Eqn.(1) and then reformulated
to solve for f . This focal length value is now mapped to a corresponding zoom
level using the f -z function, thereby adjusting the zoom to this new value.
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To demonstrate this concept, Fig. 4 shows a red block remaining fairly con-
stant in size as the block is moved forward and the zoom level is adjusted auto-
matically for the PTZ camera. At each of these levels the number of error pixels
(nε) is obtained by finding the number of red pixels outside the target box and
the number of non-red pixels inside the target box using color segmentation.
Figure 4 also presents the low number of error pixels (and percentage error) at
different zoom levels. Note that since the block is moved manually, there may
be some minimal translation involved. The values obtained for the error pixels
can be used to evaluate the precision of the mapping with variations in zoom for
particular application needs.

(a) zoom=1 (b) zoom=2.72 (c) zoom=3.64 (d) zoom=4.95
nε = 235 (0.96%) nε = 421 (1.73%) nε = 156 (0.64%) nε = 393 (1.61%)

Fig. 4. Size of the red block in the image (24, 400 pixels) remains almost constant due
to the automatic zoom update. Note the increase in size of the background object.

4 Experiments

In order to evaluate the complete PTZ mapping model proposed in this work,
we performed multiple experiments using synthetic data and real data captured
from commercial off-the-shelf PTZ cameras. All the experiments covered in this
section are important contributions of this work (beyond [6]) because they com-
prehensively tested the model both qualitatively and quantitatively in the fol-
lowing way. The first set of experiments examined the accuracy of the model
by mapping individual pixels from images across the entire scene to their corre-
sponding pan-tilt locations to generate spherical panoramas. We then performed
experiments using synthetic data to quantify the accuracy of the mapping model.
We next studied the pan-tilt deviations of the cameras and their effects on the
mapping model. We then demonstrate the validity of the model across vari-
ous zoom levels. The final experiment demonstrates the complete pan-tilt-zoom
capabilities of the model within a real-time active tracking system.

All the experiments involving real data were performed using two models of
commercial security PTZ cameras: 1) Pelco Spectra III SE surveillance camera
(analog) and 2) Sony IPELA SNC-RX550N camera (digital). The accuracy of
pan-tilt recall for these cameras were evaluated by moving the camera from arbi-
trary locations to a fixed home pan-tilt location and then matching SIFT feature
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points across the collected home location images. The mean (µ) and standard
deviation (σ) of the pan-tilt recall error (in pixels) measured for the Sony and
Pelco cameras were (2.231, 0.325) and (2.615, 0.458) respectively. Similarly, we
also calculated the mean and variance of the zoom recall error for the Pelco and
Sony cameras as (0.0954, 0.0143) and (0.0711, 0.0082) respectively, by chang-
ing the zoom from arbitrary zoom levels to a fixed home zoom level and then
polling the camera’s zoom value (repeated for multiple home zoom levels). The
radial distortion parameter (κ) values obtained for the Sony and Pelco cameras
were 0.017 and 0.043 respectively, determined using the technique from [15] [16].
These values can be used by the reader to evaluate the quality of the cameras
used in the experiments.

4.1 Panorama generation

PTZ cameras generally have a large pan-tilt range (e.g., 360 × 90 degrees). By
orienting the camera to an automatically calculated set of overlapping pan-tilt
locations, we collected a set of images such that they cover the complete view
space. The number of images required for complete coverage vary with the zoom
level employed, a study of which follows later. We then took images which are
pairwise adjacent from this set and used them to automatically calculate a robust
estimate of the focal length f (using the technique described in Sect. 3.2). Next,
we mapped each pixel of every image to its corresponding pan-tilt orientation
in the 360 × 90 degree space (at a resolution of 0.1 degree). The pan-tilt RGB
data were plotted on a polar coordinate system, where the radius varies linearly
with tilt and the sweep angle represents the pan. Bilinear interpolation was used
to fill any missing pixels in the final panorama. The result is a spherical (linear
fisheye) panorama which displays the entire pan-tilt coverage of the camera in a
single image.

(a) Ground truth (b) Constructed panorama

Fig. 5. SIFT keypoint matching quantifying the accuracy of the mapping model.

To quantitatively evaluate the accuracy of the above technique, we performed
an experiment using a virtual environment synthetically generated in Maya.
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The ground truth data (Fig. 5(a)) was obtained by setting up a camera with a
wide field-of-view1 directly above the environment so that it captures the entire
field-of-coverage. We then generated a panorama (Fig. 5(b)) using the synthetic
data captured from different pan-tilt locations using our technique. By using
SIFT to match keypoints between the ground truth image and the generated
panorama, we calculated the distance between the matched locations for the top
100 keypoints. The mean and standard deviation values were obtained as 7.573
pixels and 0.862 pixels respectively. For images of size 900×900, we believe these
values are reasonably small and within the error range of SIFT matching since
the interpolation does not reproduce the fine textures very accurately in the
scale space. These low values for the matching distance statistics quantitatively
demonstrate the accuracy of the panorama generation technique.

(a) (b)

Fig. 6. Panoramas for different shifts show illumination differences before intrinsic
image generation.

While performing the above experiments using real cameras, the automatic
gain control (AGC) on these cameras could not be fully disabled as the camera
moved to new locations. Consequently there were illumination gain differences
among the different component images captured across the scene and these differ-
ences were reflected in the panorama. Therefore, we used a technique of deriving
intrinsic images [17] and computed a reflectance-only panoramic image to over-
come this problem. We generated multiple panoramas of the same scene (see
Fig. 6) by shifting the pre-configured pan and tilt coverage locations in multi-
ples of 5 and 1 degree intervals respectively. These small shifts in pan and tilt
displace the location of the illumination seams in the panoramas across multiple
passes, thus simulating the appearance of varying shadows. We then separated
the luminance and chrominance channels from the RGB panoramas by changing
the color space from RGB to YIQ. After running the intrinsic image algorithm
on the Y (luminance) channel alone, we combined the result with the mean I

1 Maya camera parameters: Film Gate-Imax, Film aspect ratio-1.33, Lens squeeze
ratio-1, camera scale-1, focal length-2.5.
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(a) (b) (c) (d)

Fig. 7. Panoramas from Pelco (a-c) and Sony (d) cameras mounted on buildings at
different heights.

and Q channels of the panorama set, and converted back from YIQ to the RGB
color space for display. As shown in Fig. 7(d), the result provides a more uniform
panorama as compared to Fig. 6.

The above process was tested on multiple Pelco cameras mounted at varying
heights (on 2, 4, and 8 story buildings) and a Sony camera. The final results after
intrinsic image generation are shown in Fig. 7, demonstrating the applicability
of the model to real surveillance cameras at different heights. See high resolution
version of Fig. 7(a) in supplementary material.

4.2 Pan-Tilt Recall

In order to study the effect of inaccuracies in the pan-tilt motor on the proposed
model, we simulated varying degrees of error in the data capturing process and
then compared the resulting panoramas. This was performed by introducing
either a positive or negative (randomly determined) fixed shift/error ε in the pan
and tilt values at each of the pre-configured pan-tilt locations and then capturing
the images. This data was then used to generate a spherical panorama using the
above mentioned technique. We repeated this process to generate panoramas for
different values of simulated pan-tilt shift/error ε in the range 0.1 to 5 in steps
of 0.1 degrees. Figure 8 shows the results of this experiment for ε values of 1.5
and 2.5 (before intrinsic analysis). The alignment errors for panoramas with ε
values less than 1.5 degrees were visually negligible, but were exacerbated for ε
greater than this value.

4.3 Validity Across Zoom levels

The next set of experiments were aimed towards verifying that the model works
at varying zoom levels. We performed the panorama generation process at dif-
ferent zoom levels in the range of zoom=1 to zoom=12. At each zoom level,
the appropriate focal length was chosen by employing the f -z mapping function
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(a) (b)

Fig. 8. Panoramas with simulated pan-tilt error ε values of (a) 1.5 and (b) 2.5. Note
the alignment problems in the panorama with ε=2.5.

learned using the technique described in Sect. 3.3. As the zoom level increases,
the field-of-view of each component image reduces and consequently the number
of component images required to cover the complete pan-tilt space increases.
Figure 9 shows representative panoramas (before intrinsic analysis) generated at
zoom levels 1, 5, 10, and 12 for the Sony camera (and presents the number of
component images needed to construct the panoramas). In each of the panora-
mas, it was observed that the small component images registered correctly and
no noticeable misalignments were seen with any change in zoom. This demon-
strates that the (x, y) to (pan, tilt) mapping model works irrespective of the
zoom level employed.

(a) 76 images (b) 482 images (c) 1681 images (d) 2528 images

Fig. 9. (a)-(d) Panoramas (pre-intrinsic) generated at zoom levels 1, 5, 10, and 12
respectively with their corresponding number of component images.
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4.4 Use in Tracking with Active PTZ Cameras

Combining the pan, tilt, and zoom mapping capabilities of the proposed model,
we developed a real-time active camera tracking application with a wide-area
PTZ surveillance camera. The active camera system continually follows the tar-
get as it moves throughout the scene by controlling the pan-tilt of the camera to
keep the target centered in its view. In addition, the camera’s zoom is continually
adjusted so that the target being tracked is always of constant size irrespective
of target’s distance from the camera.

We used the appearance-based tracking algorithm from [18] to demonstrate
the applicability of our PTZ model. Note that our model is indifferent to the
tracker itself and various other frame-to-frame tracking algorithms could be em-
ployed to handle strong clutter and occlusion situations if needed.

In the system, we model the target using a covariance of features and matched
it in successive frames to track the target. To build the appearance-based model
of the target, we selected a vector of position, color, and gradient features fk =
[x y R G B Ix Iy]. The target window was represented as a covariance matrix of
these features. Since in our application, we desire to track targets over long dis-
tances across the scene, the appearance of targets undergo considerable change.
To adapt to this and to overcome noise, a model update method from [18] was
used.

The tracker is initialized manually by placing a box on the torso of the
target. As the target moves, the best match (xmatch, ymatch) is found by the
tracker in successive frames and its distance dmatch is stored. In this system, we
restricted our search for the best match to a local search window of 40× 40 (in
frames of size 320×240). Using the proposed camera model, the (xmatch, ymatch)
coordinates of the best matching patch are converted to the change in pan and
tilt angles required to re-center the camera to the target. The tracker then checks
to determine if an update in zoom is necessary. To do so, it checks the distances of
a larger patch and a smaller patch at (xmatch, ymatch). If either of these distances
are found to be better than dmatch, the zoom is adjusted to the new size using
the same technique as described in the red block experiment in Sect. 4.4. While
moving the camera, the system polls the motor to see if it has reached the desired
pan-tilt location. Once it has reached this position, the next frame is grabbed
and the best match is again found. This process is repeated to continually track
the target.

Figure 10 shows a few frames from two sequences with a target being auto-
matically tracked using the proposed technique. In the first sequence, the target
walks a total distance of approximately 400 feet away from the camera and the
zoom level varies from 2 (in the first frame) to 5.12 (in the last frame). In the
second sequence, the target covers a distance of around 650 feet along a curved
path and the camera’s zoom varies in the range from 3 to 6.77 during this period.
See supplemental tracking movie. The ground truth locations of the target were
obtained by manually marking the left, right, top, and bottom extents of the tar-
get’s torso and calculating its center in each frame. By comparing these with the
center of the tracking box (of size 25× 50), the tracking error statistics (mean,
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zoom=2 zoom=2.81 zoom=3.64 zoom=4.82 zoom=5.12

zoom=3 zoom=3.72 zoom=4.94 zoom=5.81 zoom=6.77

Fig. 10. Active camera tracking results from two sequences.

standard deviation) in pixels were obtained as (2.77, 1.50) and (3.23, 1.63) re-
spectively for the two sequences. In addition, the accuracy of the zoom update
function was evaluated by comparing the ground truth height of the target’s
torso with the height of the tracking box. The error in this case was obtained
to be 6.23% and 8.29% for the two sequences. This application demonstrates a
comprehensive exploitation of the pan-tilt-zoom capabilities of the camera using
the proposed model. Again, other trackers could also be employed with our PTZ
model for different tracking scenarios/requirements.

5 Key Contributions and Advantages

To summarize the key contributions of this work, we presented 1) a theoretical
derivation of a complete pan-tilt-zoom mapping model for real-time mapping of
image x-y to pan-tilt orientations, 2) a SIFT-based technique to automatically
learn the focal length for commercial-grade PTZ cameras, 3) an analysis of the
variations between focal length and zoom in the model along with its evaluation
using an object size preservation metric, 4) quantitative experiments and dis-
cussion on the PTZ mapping model with panorama generation, 5) experiments
demonstrating robustness with different brands of cameras, and 6) qualitative
and quantitative experiments within an example PTZ active tracking applica-
tion.

The proposed camera model is a straight-forward and closed-form technique.
Since previous work in this area have been based on more complex methods
(explained in Sect. 2), by showing our technique with thorough and robust re-
sults, we demonstrate that any additional modeling and computation (as shown
in previous work) is in fact not necessary for the demonstrated capabilities.
We believe our simplification compared to other over-complicated methods is
a strength, as this makes our technique more practically applicable to a wide
variety of real-time problems.
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6 Conclusion and Future Work

We proposed a novel camera model to map the x-y focal plane of a PTZ camera
to its pan-tilt space. The model is based on the observation that the locus of a
point on a fixed image plane, as the camera pans, is an ellipse using which we
solve for the desired change in pan and tilt angles needed to center the point.
We proposed techniques to automatically calculate the focal length, analyzed
the variation of focal length with zoom, tested the model by generating accurate
panoramas, and validated its usability at varying zoom levels. In future work,
we plan to utilize the model to map the camera’s pan-tilt-zoom space to ground-
plane information for registration of multiple cameras.

Acknowledgement: This research was supported in part by the National Sci-
ence Foundation under grant No. 0236653.
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