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ABSTRACT

In this paper, we propose a neural cascade architecture for joint
acoustic echo and noise suppression. The proposed cascade archi-
tecture consists of two modules. A convolutional recurrent network
(CRN) is employed in the first module for complex spectral map-
ping. The output is then fed as an additional input to the second mod-
ule, where a long short-term memory network (LSTM) is utilized
for magnitude mask estimation. The entire architecture is trained in
an end-to-end manner with the two modules optimized jointly using
a single loss function. The final output is generated using the en-
hanced phase and magnitude obtained from the first and the second
module, respectively. The cascade architecture enables the proposed
method to obtain robust magnitude estimation as well as phase en-
hancement. Evaluation results show that the proposed method ef-
fectively suppresses acoustic echo and noise while preserving good
speech quality, and significantly outperforms related methods.

Index Terms— Neural cascade architecture, acoustic echo sup-
pression, deep learning, complex spectral mapping

1. INTRODUCTION

Acoustic echo cancellation (AEC) plays an essential role in smart
speaker and speech communication systems and has received signif-
icant attention for several decades [1, 2]. Conventionally, acoustic
echo is removed by identifying an acoustic impulse response be-
tween loudspeaker and microphone using adaptive algorithms such
as normalized least mean square (NLMS) [3]. However, the pres-
ence of double-talk and background noise, especially non-stationary
noise, disrupts the convergence of these algorithms. Moreover, most
of the traditional AEC algorithms are fundamentally linear sys-
tems, which cannot deal with nonlinear distortions introduced to the
recorded echo due to the poor quality of devices such as amplifiers
and loudspeakers [4, 5].

Deep learning has been utilized recently for addressing AEC
problems due to its capacity in modeling nonlinear relations. Lee et
al. [6] use a neural network as a residual echo suppressor to remove
the nonlinear components of echo. Zhang and Wang [7] formulate
AEC as a supervised speech separation problem and achieve echo
suppression by extracting the near-end speech from a microphone
recording. Carbajal et al. [8] achieve echo removal by utilizing a
multi-input neural network based method to estimate phase-sensitive
masks. Early studies focus on magnitude enhancement and use mag-
nitude masks as the training target [6, 8, 7]. Later, complex-domain
estimation is employed for phase enhancement to improve the qual-
ity of estimated near-end speech. Convolutional recurrent neural net-
work (CRN) based methods that use complex spectral mapping for
echo suppression are introduced in [9, 10]. AEC methods that use
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Fig. 1. A typical acoustic echo cancellation system.

complex-valued neural networks for phase-aware enhancement are
described in [11, 12].

Recently, AEC Challenges [13, 14] show that various deep
learning architectures can be utilized to address AEC problems.
There is a trend of combining traditional and deep learning based
AEC methods as multi-stage systems where a traditional algorithm
is utilized in the first stage for initial echo removal and deep learning
is used in the second stage for residual echo suppression [15, 16, 11].
Moreover, multiple neural networks have been combined to perform
joint echo and noise suppression [17, 18, 19].

Although deep learning based methods have been successfully
applied to AEC with convincing results, there exists a tradeoff be-
tween echo suppression and near-end speech quality. Franzen et al.
reveal this tradeoff in [20] and provide insights to the choice of in-
puts for better echo removal [21]. A suppression loss that balances
this tradeoff is introduced in [22]. Ivry et al. propose a system with
a design parameter that allows a tunable tradeoff between echo sup-
pression and near-end speech distortion [23].

Inspired by a recent neural cascade architecture for speech en-
hancement [24], we propose a neural cascade architecture for joint
echo and noise suppression. The proposed cascade architecture con-
sists of two modules where a CRN is used in the first module for
complex spectral mapping. The estimated magnitude is then used as
an additional input in the second module for magnitude mask estima-
tion, which allows for progressive enhancement of the target speech.
Different from previous multi-stage studies that employ multiple se-
quential training processes with separate loss functions, the proposed
cascade architecture is trained in an end-to-end manner using a sin-
gle loss function. Training the two modules simultaneously using
the single loss function allows for the correction of estimation errors
of the first module. Finally, the estimated magnitude from the sec-
ond module, together with the enhanced phase from the first module,
is used for generating time-domain near-end speech. Hence the cas-
cade architecture leverages the advantages of the two modules and
obtains robust magnitude estimation as well as phase enhancement.

The remainder of this paper is organized as follows. Section
2 describes the problem and introduces magnitude and complex-
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domain estimation. Section 3 presents the proposed neural cascade
architecture. Evaluation and comparison results are given in Section
4. Section 5 concludes this paper.

2. PROBLEM FORMULATION

2.1. Signal model

As is shown in Fig. 1, the microphone signal y(n) is a mixture of
echo d(n), near-end speech s(n), and background noise v(n):

y(n) = d(n) + s(n) + v(n) (1)

where n indexes a time sample, the echo signal is generated by con-
volving a loudspeaker signal (or far-end signal x(n) when there is no
nonlinear distortion) with a room impulse response (RIR) between
loudspeaker and microphone h(n).

Joint acoustic echo and noise suppression aims to cancel echo
and noise and send only the near-end speech to the far end. Deep
learning based methods formulate the problem as a supervised
speech separation problem and work by directly extracting the near-
end speech from the microphone recording.

2.2. Magnitude mask estimation vs. complex-domain estima-
tion

The echo and noise suppression performance depends on the accu-
racy of the estimated magnitude while the quality of extracted near-
end speech is highly related to the phase information. The magni-
tude mask estimation based methods utilize ratio masks as the train-
ing targets. The value range of these masks is bounded between
[0, 1], which is easier to predict and usually leads to better echo and
noise suppression performance. The complex-domain methods em-
phasize the importance of phase estimation and jointly estimate mag-
nitude and phase, resulting in improvement in speech quality. How-
ever, the value range of the real and imaginary targets used in the
complex-domain estimation methods, either complex spectral map-
ping or complex ratio mask, are unbounded. Although a few tech-
niques have been proposed to bound the output range, it is still harder
to achieve a robust magnitude estimate compared to the magnitude
mask estimation based methods.

3. NEURAL CASCADE ARCHITECTURE

The proposed neural cascade architecture consists of a complex
module and a magnitude mask module, as is shown in Fig. 2. The
main idea of this design is to leverage the advantages of complex-
domain estimation and magnitude mask estimation so as to obtain
phase enhancement as well as a robust magnitude estimate. We have
also explored other cascading mechanisms such as using magnitude
mask estimation before complex-domain estimation. The architec-
ture presented in this paper achieves the best overall performance.

3.1. Complex module

The complex module employs a CRN for complex spectral map-
ping. The CRN takes the real and imaginary spectrograms of mi-
crophone and far-end signals [Yr(t, f), Yi(t, f), Xr(t, f), Xi(t, f)]
as inputs to predict the real and imaginary spectrograms of near-end
speech [Ŝ′

r(t, f), Ŝ
′
i(t, f)], where Y (t, f), X(t, f), and Ŝ′(t, f) are

the short-time Fourier transform (STFT) of microphone signal, far-
end signal, and estimated near-end speech within a T-F unit at time
t and frequency f , respectively, subscript r and i denote the real and

imaginary spectrograms of the corresponding signals. The enhanced
magnitude and phase are then calculated, respectively, as:

Ŝ′
m(t, f) =

√
Ŝ′2
r (t, f) + Ŝ′2

i (t, f) (2)

θŜ′(t, f) = arctan
(
Ŝ′
i(t, f)/Ŝ

′
r(t, f)

)
(3)

The CRN is an encoder-decoder architecture with a two-layer
grouped LSTM in the bottleneck to model temporal dependencies.
The encoder and decoder comprise five convolutional layers and five
deconvolutional layers, respectively, as illustrated in Fig. 2. A de-
tailed description of the CRN architecture is provided in [25] except
that our CRN has four input channels.

3.2. Magnitude mask module

The estimated Ŝ′
m(t, f), together with Ym(t, f) and Xm(t, f) are

fed to the magnitude mask module to predict a T-F mask M(t, f)
using a long short-term memory network (LSTM). The estimated
magnitude spectrogram is obtained from:

Ŝm(t, f) =M(t, f)� Ym(t, f) (4)

where � denotes element-wise multiplication, subscript m denotes
the magnitude spectrogram of the corresponding signals.

The final output, time domain near-end speech ŝ(n), is gener-
ated by feeding the estimated magnitude Ŝm(t, f) and the enhanced
phase from the complex module θŜ′(t, f) into the inverse short time
Fourier transform resynthesizer (iSTFT):

ŝ(n) = iSTFT
(
Ŝm(t, f), θŜ′(t, f)

)
(5)

The LSTM has four hidden layers with 300 units in each layer.
The output layer is a fully connected layer. Since the value range
of the output is [0, 1], the sigmoid function is used as the activation
function in the output layer.

3.3. Loss functions

The training objective of the cascade architecture consists of two
parts, corresponding to the outputs of the complex and magnitude
mask modules.

Following [26], we define the first loss Lcomplex as the real, imag-
inary, and magnitude difference between Ŝ′(t, f) and S(t, f):

Lcomplex =
1

TF

∑
t,f

(|Ŝ′
r(t, f)− Sr(t, f)|2 (6)

+ |Ŝ′
i(t, f)− Si(t, f)|2 + |Ŝ′

m(t, f)− Sm(t, f)|2)
where T and F denote the number of time frames and frequency
bins, respectively. The second loss function corresponding to the
magnitude mask module is given below:

Lmag-mask =
1

TF

∑
t,f

(M(t, f)� Ym(t, f)− Sm(t, f))2 (7)

Rather than undergoing multiple sequential training stages with
separate loss functions, we propose to combineLcomplex andLmag-mask

and train the cascade architecture only once with a single loss func-
tion:

Lcombined = λLcomplex + (1− λ)Lmag-mask (8)

where λ is a coefficient for combining the two losses. We empiri-
cally select λ = 2

3
based on the performance on the validation data.
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Fig. 2. Diagram of the proposed neural cascade architecture for joint echo and noise suppression. The first module employs a CRN for
complex spectral mapping, the output is concatenated with original inputs and fed to an LSTM to predict T-F masks. Subscripts r , i, and m

denote real, imaginary and magnitude spectrograms of signals, respectively, θŜ′ denotes the phase of Ŝ′.

4. EXPERIMENTAL RESULTS

4.1. Experiment settings

We follow the experimental setup introduced in [9, 15] and perform
experiments in situations with double-talk, background noise, and
nonlinear distortions. We randomly choose 100 pairs of speakers
from the 630 speakers in the TIMIT dataset [27] as the near-end and
far-end speakers, respectively. Three randomly selected utterances
from a far-end speaker is concatenated to form a far-end signal. A
randomly chosen near-end speech is extended to the same length by
adding zeros at both the front and rear of the signal. To achieve a
noise-independent model, we use 10000 noises from a sound effect
library (available at http://www.sound-ideas.com) for creating train-
ing mixtures (see [28]). Operational room noise (oproom) speech
shaped noise (SSN) from NOISEX-92 dataset [29], babble noise
from the Auditec CD (http://www.auditec.com), and white noise are
used for creating test mixtures. Note that the noises used for testing
are different from those for training.

RIRs are simulated using the image method [30]. To investi-
gate RIR generalization, we simulate 20 rooms of different sizes
a × b × c m3, where a ∈ {4, 6, 8, 10}, b ∈ {5, 7, 9, 11, 13}, and
c = 3 for the training mixtures. Ten pairs of random positions in
each room are simulated to generate RIRs for the loudspeaker and
near-end speaker. The reverberation time (T60) is randomly selected
from {0.2, 0.3, 0.4} s. Therefore, in total, 200 pairs of RIRs are syn-
thesized to create training mixtures. Two rooms of untrained sizes,
3 × 4 × 3 m and 11 × 14 × 3 m are simulated to generating RIRs
for testing. Ten pairs of RIRs are generated in each of the rooms,
which are denoted as RIR1s and RIR2s, respectively. The nonlinear
distortions introduced by a power amplifier and a loudspeaker are
simulated by following the steps introduced in [6, 31].

We create 20000 training and 300 test mixtures. Each training
mixture is created by first adding nonlinear distortions to a randomly
chosen far-end signal and convolving it with a randomly chosen RIR
to generate an echo signal. A randomly chosen near-end utterance
is convolved with an RIR for the near-end speaker and then mixed
with echo at a signal-to-echo ratio (SER) randomly chosen from
{−6,−3, 0, 3, 6} dB. Finally, a random cut from the 10000 noises
is added to the mixture at a signal-to-noise ratio (SNR) randomly
chosen from {8, 10, 12, 14} dB. The SER and SNR are evaluated
during double-talk periods. Test mixtures are created similarly but
using different utterances, noises, RIRs, SERs, and SNRs.

Performance of the proposed method is evaluated in terms of
ERLE for single-talk periods and perceptual evaluation of speech
quality (PESQ) [32] for double-talk periods. ERLE is defined as:

ERLE = 10 log 10
[∑

n y(n)
2/
∑

n ŝ
2(n)

]
(9)

Evaluation results are presented as mean ± std.

4.2. Evaluation results

We first evaluate the proposed method and compare it with four deep
learning based baseline methods. The evaluation results are provided
in Table 1. Architectures of the LSTM method and the CRN method
[9] are the same as the two modules used in our proposed architec-
ture. The LSTM baseline is adopted from [7] by replacing the bidi-
rectional LSTM in the original model with unidirectional LSTM.
The multi-input residual echo suppression (MI-RES) method is a
two-stage system that combines adaptive algorithm with neural net-
work [8]. The LFM-NFM [15] is a cascaded AEC method that con-
sists of two neural networks, which serve as a linear-filtering model
(LFM) and a nonlinear-filtering model (NLM).

It is seen from the table that the proposed method consistently
outperforms the other multi-stage methods. And compared with the
LSTM based magnitude mask estimation and the CRN based com-
plex spectral mapping, the proposed cascade architecture achieves
better echo removal and speech quality. Results provided in Fig. 3
show that the performance of the proposed method generalizes well
to untrained noises. Spectrograms of a test sample are given in
Fig. 4. It is seen that the output of the proposed method approxi-
mates the target near-end speech and has less residual echo and noise
compared to other methods.

4.3. Performance using different training strategies

We further evaluate the performance of the proposed cascade archi-
tecture trained using different strategies. The comparison results un-
der RIR1s, 3.5 dB SER, 10 dB SNR, and white noise are given in
Table 2. There are two reasonable masking strategies for the magni-
tude mask module in the proposed architecture, which are applying
the estimated magnitude mask upon microphone signal Ym or the
estimated near-end speech Ŝ′

m. And the models trained using these
two strategies achieve comparable performance while the proposed
method is slightly better than the other one. This is because the es-
timated Ŝ′

m has distortions in it, estimating Ŝm by applying a mask
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Table 1. Performance in the presence of double-talk, white noise, nonlinear distortions and untrained RIRs (RIR1) with 10 dB SNR and
different SER.

3.5 dB 0 dB -3.5 dB
ERLE PESQ ERLE PESQ ERLE PESQ

Unprocessed 0 1.96 ± 0.19 0 1.80 ± 0.20 0 1.60 ± 0.26
MI-RES [8] 33.26 ± 2.41 2.28 ± 0.19 33.56 ± 2.50 2.22 ± 0.18 35.04 ± 2.71 2.13 ± 0.19
LSTM [7] 44.67 ± 6.78 2.38 ± 0.19 45.80 ± 7.04 2.24 ± 0.20 46.73 ± 7.63 2.08 ± 0.24
CRN [9] 35.64 ± 2.44 2.64 ± 0.18 36.87 ± 2.66 2.51± 0.18 37.50 ± 2.54 2.33 ± 0.21
LFM-NFM [15] 38.44 ± 4.46 2.59 ± 0.21 41.42 ± 4.27 2.45 ± 0.22 44.32 ± 4.11 2.26 ± 0.23
Proposed 53.43 ± 6.43 2.68 ± 0.16 53.75 ± 6.31 2.54 ± 0.16 53.00 ± 7.56 2.37 ± 0.19
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Fig. 3. ERLE and PESQ values in the presence of different untrained
noises, SER = 3.5 dB, SNR = 10 dB.
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Fig. 4. Spectrograms of a test sample with 3.5 dB SER and bab-
ble noise at 10 dB SNR: (a) microphone signal, (b) target near-end
speech, and outputs of (c) CRN, (d) LSTM, (e) Proposed.

upon Ŝ′
m could further distort the speech components. The fourth

row of the table shows the results of the cascade architecture trained
sequentially using separate loss functions. And the last row is the re-
sults of the proposed architecture trained by only optimizing the loss
function at the final output, Lmag-mask. Comparison results illustrate
that the strong performance of the proposed method is not only due
to the neural network structure, but also benefits from the combined
loss function and the training strategy.

4.4. Robustness test

The proposed method is further tested in situations with untrained
speakers, untrained RIRs (RIR2), and echo path changes to show its

Table 2. Performance using different training strategies under 3.5
dB SER, 10 dB SNR and white noise.

3.5 dB SER ERLE PESQ
Unprocessed 0 1.96 ± 0.19
Proposed 53.43 ± 6.43 2.68 ± 0.16
Applying mask upon Ŝ′

m 51.80 ± 7.65 2.65 ± 0.18
Multi-stage sequential training 49.47 ± 6.51 2.59 ± 0.16
Optimizing Lmag-mask only 47.00± 5.55 2.52 ± 0.19

Table 3. Performance under untrained speakers, RIRs, and echo path
change conditions with 3.5 dB SER,10 dB SNR, white noise.

ERLE PESQ
Proposed Unprocessed Proposed

Untrained speaker 53.57 ± 6.30 1.95 ± 0.23 2.69 ± 0.19
Untrained larger room 56.67 ± 3.84 1.92 ± 0.14 2.79 ± 0.15
Echo path change 53.48 ± 6.47 1.96 ± 0.18 2.68 ± 0.17

robustness. To create test mixtures with untrained speakers, we ran-
domly select 10 pairs of untrained speakers from the 430 remaining
TIMIT speakers and create 100 test mixtures using RIR1s. The test
mixtures under untrained larger rooms are generated using RIR2s.
The echo path change is simulated by randomly select two pairs of
RIRs from RIR1s and switching between them every 1.5 seconds for
generating each test mixture. The SER level is set to 3.5 dB and
white noise is added to the mixture at an SNR level of 10 dB for
all the test datasets. The results given in Table 3 indicate the strong
robustness of the proposed method.

5. CONCLUSIONS

We have proposed a neural cascade architecture for joint acoustic
echo and noise suppression. The main idea is to leverage the advan-
tages of complex spectral mapping and magnitude mask estimation
to achieve joint phase and magnitude enhancement. The cascade ar-
chitecture is trained using a single loss function in an end-to-end
manner. The final output is obtained using the enhanced magni-
tude from the magnitude mask module and the enhanced phase from
the complex module. Experimental results show that the proposed
method outperforms other baseline methods and generalizes well to
untrained scenarios.
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