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Abstract—In daily listening environments, human speech is often
degraded by room reverberation, especially under highly reverber-
ant conditions. Such degradation poses a challenge for many speech
processing systems, where the performance becomes much worse
than in anechoic environments. To combat the effect of reverber-
ation, we propose a monaural (single-channel) speech dereverber-
ation algorithm using temporal convolutional networks with self
attention. Specifically, the proposed system includes a self-attention
module to produce dynamic representations given input features,
a temporal convolutional network to learn a nonlinear mapping
from such representations to the magnitude spectrum of anechoic
speech, and a one-dimensional (1-D) convolution module to smooth
the enhanced magnitude among adjacent frames. Systematic evalu-
ations demonstrate that the proposed algorithm improves objective
metrics of speech quality in a wide range of reverberant conditions.
In addition, it generalizes well to untrained reverberation times,
room sizes, measured room impulse responses, real-world recorded
noisy-reverberant speech, and different speakers.

Index  Terms—Dereverberation, temporal convolutional

networks, self attention, room impulse response.

I. INTRODUCTION

N REAL-WORLD environments, when people converse in
I a room or communicate with a device, the speech signal
is inevitably distorted by its delayed and damped reflections
from various surfaces (walls, ceilings, tables, and so forth)
during sound propagation. This type of distortion, namely, room
reverberation, degrades the speech quality and intelligibility for
human listeners [19], especially when the reverberation time
(Tsp) is long. Moreover, reverberation poses a serious prob-
lem for many speech-related applications including automatic
speech recognition (ASR), which is widely utilized in smart
speakers and in-car systems for voice control. It has been shown
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that the performance of ASR systems is severelly degraded
under far-field conditions [49]. Therefore, reducing the effect of
reverberation is beneficial for both human listeners and machine
perception systems. In this study, we address room reverberation
in monaural scenarios, which is easier to apply but more chal-
lenging lacking spatial information provided by a microphone
array.

Due to the importance of speech dereverberation, it has been
extensively studied and many algorithms have been developed in
the past decades. For example, by assuming an exponentially de-
caying model of room impulse response (RIR), Lebart et al. [25]
proposed a power spectral subtraction algorithm to remove late
reverberation. Wu and Wang [47] proposed a two-stage derever-
beration algorithm, which employed an inverse filter to reduce
early reflections in the first stage and spectral subtraction to re-
move long-term reverberation in the second stage. In [28], Lépez
et al. considered the magnitude spectrum of late reverberation as
a sparse linear combination of the magnitude spectrum of past
frames and proposed to predict the late reverberation using a
Lasso based approach. In order to obtain an inverse filter in short-
time Fourier transform (STFT) domain, Nakatani er al. [32]
employed a long-term linear prediction method, and achieved
good dereverberation performance [6], [24]. Specifically, based
on arelatively large number of past frames, frequency-dependent
linear prediction filters were first estimated by minimizing the
weighted prediction error (WPE). Then the enhanced signal was
obtained by subtracting the filtered signal (the estimated late
reverberation) from the reverberant signal. Since it operates in
the complex domain, both the magnitude and phase information
could be recovered. Although few distortions were introduced
in WPE-processed signals, a certain amount of reverberation
remains.

In recent years, deep neural networks (DNNs) have been
widely used in speech enhancement or separation, and substan-
tially outperformed conventional enhancement methods [44].
For speech dereverberation, Han et al. [13], [14] first proposed
to learn a spectral mapping from the log magnitude spectrum
of reverberant speech to that of anechoic speech by using a
DNN. Noting the importance of reverberation dependent pa-
rameters in supervised training, Wu et al. [46] developed a
reverberation-time-aware approach to suppress reverberation in
a wide range of reverberation times. Better performance over
Han et al’s system was reported. However, the utilization of
feed-forward DNNs in these approaches can only capture limited
contextual information. To overcome such a limitation, Santos
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and Falk [39] proposed a recurrent neural network (RNN) to
capture long-term contexts while employing a 2-D convolutional
layer to extract short-term contextual information. Their study
reported some benefits from residual connections. By employing
RNN with long short-term memory (LSTM), we previously
estimated the magnitude spectrum of late reverberation first, and
then subtracted it from the magnitude spectrum of reverberant
speech [52]. Our training used the magnitude spectrum of direct
sound plus early reflections as the training target. It is worth
noting that this design can be viewed as implicitly adding skip
connections from LSTM’s input layer to the output layer.

Despite the advantage of incorporating long range contexts,
one drawback of RNN-based approaches is that the output
of the current time step depends on the computation of the
previous time steps, which prevents parallelization. On the other
hand, stacking multiple layers in convolutional neural networks
(CNNs) also captures contextual information. Another benefit
is that the hierarchical structure of CNN enables a short path
to incorporate distant information than the chain structure of
RNN [9]. Systematic evaluations [2] show better performance
of convolutional architecture for sequence modelling. This mo-
tivates us to develop a CNN-based system for speech derever-
beration.

As indicated in a previous study [46], to deal with various
reverberant environments, some reverberation time dependent
parameters should be included. Instead of using a reverberation
time estimator, we believe that such information can be encoded
in the relationship among input features (e.g., the magnitude
spectrum) extracted from reverberant speech. This inspires us
to apply an attention mechanism [43] to input features. By
exploring the relevance among features at different time steps,
the attention mechanism is expected to produce a dynamic
representation according to different reverberant environments,
e.g., different Tgps, and direct-to-reverberation ratios (DRRs).
We take an attention layer as a feature enhancement module for
the rest of the dereverberation system.

Based on the above analyses, we propose a monuaral speech
dereverberation algorithm using temporal convolutional net-
works (TCNs) with self attention. More specifically, a self-
attention module is first applied to raw input features to generate
dynamic representations, and then a temporal convolutional
network is employed to learn the nonlinear mapping from
the enhanced features to the magnitude spectrum of anechoic
speech. Finally, a 1-D convolutional layer is added to smooth
the estimated magnitude spectrum among adjacent frames. A
recent study [36] employing wide residual networks is related
to our algorithm, but we use a different network architecture and
introduce the self-attention mechanism. It is worth noting that
TCN has been successfully used for speaker separation [29] and
speech enhancement [33], both in the time domain.

The rest of the paper is organized as follows. We first describe
our proposed algorithm in Section II. Then the experimental
setup is introduced in Section III. In Section IV, the evaluation
results and comparisons are presented. We conclude this paper
in Section V.
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Fig. 1. Diagram of the proposed system, where Y (i) denotes magnitude

spectrum and X (7) enhanced magnitude spectrum. The trainable neural network
is shown within the dotted box.

II. ALGORITHM DESCRIPTION

Fig. 1 shows the diagram of the proposed system. In this
section, we first describe the signal model of reverberant speech
and feature extraction. Then the details of each component of
the system are introduced in the following subsections.

A. Signal Model and Feature Extraction

Let s(t), y(t), and h(t) denote clean speech, reverberant
speech, and room impulse response function, respectively. The
reverberant speech y(t) can be written as

y(t) = s(t) x h(t) (1

where * stands for the convolution operator. Here we divide
h(t) into two components, namely, impulse response function
hqa(t) for direct sound and h,.(t) for reverberation. Therefore,
the reverberant signal can be represented by

y(t) = s(t)  ha(t) + s(t) = he(t) = 2(t) +r(t)  (2)

Our study aims to recover the anechoic signal (direct sound) (¢)
given the corresponding reverberant observation (). Note that
x(t) is slightly different from s(¢) by a time shift and an energy
decay caused by sound propagation through the direct path.
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Given a time-domain signal sampled at 16 kHz, we divide it
into frames by using a 32 ms Hamming window with 8 ms win-
dow shift. A 512-point fast Fourier transform (FFT) is applied to
each frame, which results in 257 frequency bins. To compress the
dynamic range, the cubic-root compressed magnitude spectrum
of the reverberant speech is used as features. We use Y (m)
to denote the compressed magnitude spectrum features at time
frame m, which is a 257-D vector. Then, our system takes the
following consecutive feature vectors as the input,

Y = {Y(1),Y(2),....Y(N)} 3)

where NV is the total number of frames in an utterance.

We use the cubic-root compressed magnitude spectrum of the
anechoic speech as the training target. At frame m, let X (m)
denote the compressed magnitude spectrum of the anechoic
speech. The training target is expressed as

X ={X(1),X(2),...,X(N)} )

The dereverberation task is now formulated to be a sequence-
to-sequence mapping problem, ie., {Y (i)} = {X(¢)},i =
1,2,...,N.

B. Self Attention as a Pre-Processing Module

Physically, reverberation consists of a collection of sound
reflections from surfaces in an acoustic space. In other words, at
each time step ¢, the sound reaching the receiver (microphone or
ear) includes the attenuated and delayed past signals in addition
to the direct sound, resulting in strong feature correlations at
different time steps. Reverberation information like reverbera-
tion time is embedded in the correlations among different time
steps of the input sequence {Y (¢) }. Instead of selecting specific
models based on parameter estimation, we propose to learn
a dynamic representation by exploring the input sequence to
adapt to various reverberant environments. A natural choice
is to introduce the attention mechanism, which dynamically
emphasizes more relevant features.

Recently, attention-based models have been successfully
utilized in many applications and achieved impressive
performance, including machine translation [43], language
understanding [7], [41], speech recognition [4], [42], speech
enhancement [15], [26]. We adopt the multi-head attention
mechanism [43] as a self-attention module. Fig. 2 shows the
diagram of the module. Raw sequence features Y are taken
as the input, then passed through a batch normalization layer
(BN). After feeding the normalized features to the multi-head
attention module~ and residual connections, a new sequence of
representations Y is generated as the output.

Inside the multi-head attention module, query (q) and key-
value (K — V') pairs provide the input. They are first linearly
projected to ¢’, K’, and V’, respectively. Then they are split
to multiple heads to capture information in different subspaces.
We denote the query, keys, and values for each head as ¢,
K'y,and V', respectively, where h = 1,2, .., M, and M is the
number of heads. For a given query q’y, a weight distribution
on the whole sequence is computed based on the similarities
between the query (q’) and keys (K';). For each query, a
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Fig. 2. Diagram of the self-attention module, where Y denotes magnitude
spectrum features and Y enhanced features; BN denotes batch normalization.
The multi-head attention module is further illustrated on the right, where the
number of heads is 2.

compact dynamic representation is learned to incorporate more
relevant information in the sequence by making a weighted sum
of the values (V’},). We use the scaled dot product to measure
the similarities. Therefore, the attention is computed by

anK'y
NZ

where dy/, is the dimension of a vector in matrix K’j,. The
matrix form is written as follows,

Attention(q'n, K'y, V') = SoftMax( W (5

Attention(Q', K'1,, V'1,) = SoftMax( "\V o (6)

QIhKI
d,

Then, we merge the multi-head attention by concatenating
these attention vectors. Finally, we obtain the new representa-
tions by passing the merged attention to a linear layer. Note that
all the operations are applied to the same sequence (i.e., normal-
ized {Y (i)}, and Q@ = K =V = normalized Y'). Thus we
call it multi-head self-attention mechanism. We refer the reader
to [43] for more details.

In our experiments, the normalized features (257-D) are first
linearly projected to 256-D vectors. The number of heads is set
to be 4, so the scale factor dj, is 256/4 = 64. After merging
the 4 heads, we employ a 256-D to 257-D linear projection to
recover the dimensionality. A~fter adding the normalized Y, we
obtain the enhanced feature Y as shown in Fig. 2.

C. Temporal Convolutional Network as a Nonlinear
Mapping Module

We employ a temporal convolutional network (TCN) to learn
the nonlinear mapping from the dynamic representation to the
compressed magnitude spectrum of anechoic speech. It is worth
noting that the term TCN in this paper has a slightly different
meaning from that used in [2], where it is constrained to a causal
setting using 1-D causal convolutions. We do not limit ourselves
to such setting, i.e., 1-D non-causal convolution (normal 1-D
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Fig. 3. Diagram of the TCN module, and a TCN block is shown on the right.

convolution) is used to build our system. Fig. 3 shows the
diagram of the TCN module and also the design of the TCN
building block.

The TCN can be viewed as a deep residual network [17] using
1-D convolutional layers. The design of a TCN building block is
referred to as a pre-activation design [18], where the activation
function is placed before the weight layer as shown in Fig. 3.
Here, Parametric Rectified Linear Unit (PReLU) [16] is utilized
as the activation function. Within each block, we stack two 1-D
convolutional layers. Instead of using a standard convolution,
we employ depthwise separable convolution [5] in the design.
By factorizing the convolution in one depthwise (channelwise)
convolution and one 1 X 1 pointwise convolution, depthwise
separable convolution dramatically reduces computation cost
while preserving the learning capacity [5], [20]. The 1 x 1
convolutional layer in the residual connections is used only when
the number of channels of the TCN block input is different from
that of output. One linear layer is placed on top of the TCN to
map the output of the TCN to the magnitude spectrum.

Due to the smearing effect in magnitude spectrum caused by
reverberation, especially when the reverberation time is long,
it is important to incorporate a large context when learning the
mapping function to perform dereverberation. Although some
global information of the sequence has been extracted in the
self-attention module, it is still useful to enlarge the receptive
field of the TCN. For CNN-based models, stacking more convo-
lutional layers to make the network deeper is a straightforward
way to increase the size of the receptive field. However, very deep
architecture would cause difficulties for optimization and also
make the model size large. An alternative way is to introduce
dilated convolution [50] which can expand the receptive field
exponentially. With these considerations, we add dilation in 1-D
convolutional layers with repeating dilation rates 1, 2, 5, 9 (these
numbers have no common divisor). This set of dilation rates is
selected to avoid gridding artifacts caused by stacking dilated
convolutional layers [45].

In our experiments, we stack 8 blocks to build the TCN
module. In other words, we have 16 (8 x 2) convolution layers
in the TCN module, so the chosen dilation rates are repeated 4
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times in sequential order. For each convolution layer, the kernel
size is 3, the stride is 1, and the number of channels is set to 512.
Therefore the top linear layer performs linear projection from
512-D to 257-D. We use the same padding for each convolution
layer to keep the length of the feature sequence the same as that
of the input sequence. The size of the receptive field of the TCN
module is 137.

D. 1-D Convolution as a Smoothing Module

Due to overlaps between the adjacent frames, the enhanced
magnitude spectrum should be smooth. To improve the smooth-
ness, we add one 1-D convolutional layer (depthwise separable
convolution) with a small kernel size (3 in our experiments) on
top of the TCN module, which can be viewed as mapping from a
small context window of magnitude spectrum to the central one.
Since the values of magnitude spectrum are positive, Rectified
Linear Unit (ReLLU) [10] is used as the activated function for the
output layer.

The mean squared error (MSE) is used as the loss function,
namely,

LY, X;0) =X - f(Y)|3 ©)

where || ||z denotes the I3 norm and © denotes the parameters
in the model f, which are learned during training.

E. Time-Domain Signal Resynthesis

After obtaining the enhanced magnitude spectrum X, in
order to reduce the STFT inconsistency with the reverberant
phase, we employ Griffin-Lim’s iterative phase enhancement
algorithm [11] and overlap-add (OLA) method to resynthesize
the corressponding enhanced time-domain signal [14]. With the
better enhanced spectral magnitude, our approach is expected to
deliver better enhancement performance.

F. Causal Setting

Although the proposed dereverberation algorithm is non-
causal, it can be converted to a causal system with the following
modifications.

1) Applying a masking matrix before the SoftMax layer to
eliminate future time steps. The values of the matrix in the
upper triangle are set to be —oo, and otherwise 0. Adding
this masking matrix turns the future values after any time
step to negative infinity while keeping the past and cur-
rent values unchanged. Through softmax normalization,
the weights on the future frames will be 0, making the
self-attention module causal. This technique is used in the
decoder part of the Transformer model [43].

2) Replacing all the 1-D convolutions by 1-D causal convolu-
tions. Fig. 4 shows the difference between these two types
of convolution. After switching to causal convolutions,
the TCN module and the smoothing module both become
causal. Note that the batch normalization requires the
whole sequence to compute mean and standard deviation
statistics, which is not causal during the training stage.
However, during the test stage, these computed statistics
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TABLE I
CONFIGURATION FOR SIMULATED DATA GENERATION

item configuration
clean utterance (WSJO) train: 7138 / validation: 410 / test: 330
speakers train: 83 / validation: 10 / test: 12

room size (mxmxm)

5.6x3.8%2.5 (small) / 6.3x4.9%x2.6 (medium) / 6.2x6.7x3.0 (large)

microphone-speaker distance (m)

0.5 (near) / 2 (far)

T6o (s) (training/validation)

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

oo/l\)o
oo%oo

t-2 t-1 t t+l

Fig. 4. Non-causal 1-D convolution (up) and causal 1-D convolution (down).

are directly employed, i.e. there is no need to consider the
whole sequence.

With the above modifications, the magnitude spectrum en-
hancement part of the proposed system becomes causal. How-
ever, Griffin-Lim’s phase enhancement algorithm requires ad-
jacent frames including several future frames, which prevents
the whole system from being deployed in real time. This can
be avoided by using causal phase reconstruction methods [3] or
simply the reverberant phase.

III. EXPERIMENTAL SETUP
A. Datasets

We evaluate our proposed system using the WSJO corpus [35].
The configuration for dataset generation is listed in Table I.
Specifically, there are 7138, 410 and 330 clean utterances to
generate training data, validation data and test data, respectively.
For speakers, the training data consists of 83 speakers; the vali-
dation data consists of 10 speakers; and the test data consists of
12 speakers. Therefore, a speaker-independent dereverberation
system is developed. We simulate three reverberant rooms of
different sizes, from small to large, to generate the reverberant
speech. The microphone is placed in a fixed position in each
room while the position of the speaker is randomly chosen.
As for the distance between the microphone and the speaker,
we consider two situations, i.e., near (0.5 m) and far (2 m). In
addition, a wide range of reverberation times is studied, from
0.3 sto 1.0 s, with a 0.1 s increment. In summary, there are 3
(room sizes) x 2 (distances) x 8 (Tgps) = 48 combinations in
total. In training/validation data, for each utterance, we randomly
select 6 combinations to generate 6 different RIRs, and then
convolve with the clean speech to produce 6 kinds of reverberant
speech. Therefore, the training set includes 7138 (clean speech)
x 6 (RIRs) = 42828 utterances, and the validation set 410 (clean
speech) x 6 (RIRs) = 2460 utterances. In order to investigate the
gernalization ability of the proposed system, different test sets
are employed (see details in Section IV). It should be pointed
out that both the RIRs and sentences used for testing are unseen

during training/validation. All simulated RIRs are generated
utilizing an RIR generator [12], which is based on the image
method [1].

We also train and evaluate the proposed system on the RE-
VERB challenge data [24] for the monuaral speech enhancement
track. The challenge data is based on WSJCAMO corpus [38]
and MC-WSIJ-AV corpus [27]. Specifically, a multi-condition
training set is generated by convolving 7861 clean utterances
from WSJICAMO with 24 measured RIRs. The range of re-
verberation times for training is from around 0.2 s to 0.8 s.
Different from our simulated dataset, a moderate level of noise
is included in the training set. Recorded noise is added to the
reverberant speech at 20 dB signal-to-noise ratio (SNR). For
development and evaluation sets, simulated data (SimData) and
real recorded data (RealData) are provided. SimData includes
3 (room sizes) x 2 (distances) = 6 reverberant conditions.
The reverberation times of these three rooms are about 0.3 s,
0.6 s and 0.7 s. In the development set, 1484 sentences from
the WSJCAMO corpus are convolved with 6 RIRs to generate
reverberant speech and background noise is also added at SNR
of 20 dB. The simulated evaluation data is generated in a similar
way with 2176 sentences from the WSJICAMO corpus. RealData
consists of real recordings in a noisy and reverberant room. The
reverberation time is about 0.7 s. There are 1 (room size) X 2
(distances) = 2 reverberant conditions. Different rooms are used
for the training set, development set, and evaluation set, ensuring
that the reverberant conditions for evaluation are unseen during
system development. The background noise used in the data
generation was recorded in a real room and mainly generated by
air conditioning.

Our experiments focus on studying monaural speech dere-
verberation. Therefore, we consider each channel signal in the
the multi-conditional training set as an independent reverberant
signal, and utilize all the eight channels data for training. the
one-channel SimData of the development set is used as the
validation data during training. The trained model is evaluated
using the one-channel SimData and RealData in the evaluation
set.

B. Comparison Systems

We employ an improved model of our previous study [52]
as a baseline system. Fig. 5 shows the diagram of the system.
It is denoted by “BLSTM” for convenience. Compared with
the original method in [52], there are a couple of improvements.
Firstly we replace the uni-directional LSTM with a bi-directional
LSTM (BLSTM). Secondly, as we mentioned earlier, instead of
explicitly performing spectral subtraction in the network, we
utilize a residual learning, which implicitly forces the BLSTM
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Fig. 5. Diagram of the BLSTM dereverberation baseline system.

to estimate the reverberation and remove it from reverberant
magnitude spectrum features. Moreover, both late reverberation
and early reflections are removed. In our experiments, a two layer
BLSTM network with 1024 hidden units is used, with 512 units
assigned to each direction. The number of the parameters of the
baseline model is around 9.72 M. We denote the proposed system
by “proposed,” which contains around 4.70 M parameters.
Therefore, from the perspective of model size, the proposed
model is substantially smaller than the baseline model.

In addition, an ablation study is conducted to investigate
the effects of the three modules in the proposed system. More
specifically, three systems using the nonlinear mapping module,
the mapping module plus the smoothing module, the map-
ping module plus the self-attention module are included for
comparisons and denoted by “TCN,” “TCN-+smoothing,” and
“TCN+self-attention,” respectively.

C. Optimization

The systems are initialized by using the orthogonal initializa-
tion method [40], and trained using the Adam [23] optimizer
with a weight decay. For the proposed CNN-based system,
twelve utterances are batched together, where the shorter ut-
terances are padded by repeating themselves. Performing this
padding provides a better estimate of statistics for batch nor-
malization than zero padding. The padded parts are removed at
the output when computing the loss. For the baseline BLSTM
system, similar to the previous study [52], a 0.3 dropout rate
between the two hidden layers of the BLSTM [51] is applied
to mitigate the overfitting issue. We employ the weight-dropped
technique [31] with 0.5 dropout rate to mitigate the overfitting
across the recurrent connections. Sixteen utterances make up
one batch. Instead of zero/repeating padding to the same length
or truncating the utterances with fixed length, we perform batch
processing using variable length sequences supported by Py-
Torch [34].

D. Evaluation Metrics

We use perceptual evaluation of speech quality (PESQ) [37]
and frequency-weighted segmental signal-to-noise ratio
(SNRy,,) [30] as the main metrics to evaluate the proposed
approach. For both of these standard metrics, a higher value
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TABLE II
APPROXIMATE DRRS AT DIFFERENT REVERBERATION TIMES

Teo (5) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Test A (dB)

-0.38  -231 461 -454 540 -634 -7.01 -7.58

indicates better performance. For PESQ evaluation, we
employ wide-band PESQ [21] as used in [6] instead of the
more popularly used narrow-band version (see e.g. [44]).
When evaluating a corrupted or enhanced signal, wide-band
PESQ typically produces a lower value than the narrow-band
counterpart.

In order to compare with other published results on the
REVERB challenge data, we also report cepstrum distance
(CD) [30], log likelihood ratio (LLR) [30], and speech-to-
reverberation modulation energy ratio (SRMR) [8] on that
dataset. For the first two metrics, the lower the better; for the
last one, the higher the better. For RealData in the evaluation
set, due to the absence of reference signals, only SRMR results
are reported.

IV. EVALUATIONS AND COMPARISONS

In this section, we evaluate our proposed system with both
our simulated data and sim/real data provided by REVERB
challenge. The system performance is compared with the base-
line BLSTM, as well as TCN, TCN+smoothing, and TCN+self-
attention described in Secttion III-B.

A. Evaluations at Different Reverberation Times

To test whether the trained model generalizes well to other
rooms, a set of RIRs is generated for testing. We simulate a
room of size 10 m x 7m x 3 m. Eight reverberation times from
0.3 s to 1.0 s are considered, and they match the reverberation
times used for training. A 2 m microphone-speaker distance
is adopted to represent the far-field condition, which is more
difficult than the near-field condition. Microphone position is
fixed while the position of the speaker is randomly chosen. We
denote this test set as “Test A”. Table II shows the DRR values at
different reverberation times. The DRR values are approximated
on the basis of simulated RIRs according to

h2
DRR = 10log, (%ﬁ) 8)
DRR can be considered as another metric to measure the effects
of reverberation besides reverberation time. It is inversely pro-
portional to the square of the distance. A lower value indicates
that it is more challenging to perform dereverberation.

Table 111 lists the average PESQ and SNR ¢, scores on the Test
A set, where a wide range of reverberation times is evaluated.
Compared to unprocessed reverberant conditions, all the systems
show significant improvements in each condition in terms of
both PESQ and SNRy,,. Our proposed system performs the
best among the five. On average, compared with the reverberant
speech, the enhanced speech processed by the proposed system
improves PESQ by 1.18, and SNR ¢, by 6.8 dB, demonstrating
its effectiveness to perform dereverberation. Although the TCN
yields close PESQ scores, it is worse than the proposed system
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TABLE III
AVERAGE PESQ AND SNR ¢, SCORES ON TEST A. BOLDFACE NUMBER INDICATES THE BEST PERFORMANCE

PESQ SNR;,, (dB)
Teo (s) 03 04 05 06 07 08 09 1.0 Avg. ‘ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Avg.
reverb 175 149 129 128 124 121 121 1.8 133]1079 9.07 618 568 486 38 297 254 575
BLSTM 276 258 224 211 201 193 1.84 178 216 | 1498 1350 12.89 1217 1158 10.76 1033 10.19 12.05
TCN 293 282 248 239 228 219 209 201 240 | 1423 1323 1218 1123 10.64 980 9.03 897 1116
TCN+smoothing 290 278 246 237 224 217 205 199 237 | 1436 1324 1202 11.06 1035 959 873 873 1101
TCN+self-attention  3.02 2.89 253 246 231 225 214 205 246 | 1510 1428 1301 1204 1142 1072 988 9.94 12,05
proposed 3.06 296 260 252 238 229 218 2.09 251 |1536 1425 1325 1269 1199 1142 1083 1059 12.55
240 — TABLE IV
— TCN (training) APPROXIMATE DRRS AT UNTRAINED LONG REVERBERATION TIMES
_— --- TCN (validation)
] —— TCN+self-attention (training)
200 ---- TCN+self-attention (validation) Teo (5) 11 12 1.3 14 15
Test B (dB) -7.81 -831 -859 -9.03 -9.27
n 180
2 160 condition (Tgp is 1.0 s and the microphone-speaker distance
is 2 m). Fig. 7(a) presents the spectrogram of the reverber-
1404 ant speech. The corresponding spectrogram of the anechoic
1204 speech is shown in Fig. 7(b). The enhanced speech processed
by BLSTM, TCN, and the proposed algorithm are shown in
1004 : : , . , Fig. 7(c), (d) and (e), respectively. It is clear that most smear-
0 3 1o 1 0 = 30 ing effects caused by reverberation have been suppressed and
epoch .
the spectrotemporal structure of the corrupted speech is well
Fig. 6. Loss curves with respect to epoches for training and validation. enhanced by all three algorithms, with the proposed algorithm

by more than 1 dB in SNRy,,. BLSTM shows better SNR,,
scores than TCN, however, it performs the worst on PESQ.

Adding the smoothing module alone does not improve the
performance of TCN. However, this module brings a perfor-
mance gain for TCN together with self attention. TCN+self-
attention performs better than TCN in terms of both PESQ
and SNR ¢,,. When we compare the training procedure between
TCN and TCN+self-attention, the introduction of self-attention
pre-processing speeds up the training process with faster con-
vergence and lower validation loss, indicating a more effective
integration of contextual information. Fig. 6 shows the loss
curves of TCN and TCN+self-attention for 30-epoch training,
clearly demonstrating the efficiency of the self-attention mod-
ule. For most speech processing tasks, especially speech dere-
verberation, the contextual information is important. In TCN,
we enlarge receptive fields by stacking convolution layers and
adding dilations in them. As the network becomes deeper, longer
contexts are available. However, our pre-processing module
employing the self-attention mechanism is able to leverage the
contextual information more efficiently, since each frame can
observe the entire sequence without stacking many layers. As
Wau et al. pointed out [46], for reverberant speech the inter-frame
correlation depends on T and the correlation of neighboring
frames becomes weaker for shorter reverberation time. We
find that, after pre-processing with the self-attention module,
the inter-frame correlation is somewhat enhanced between the
frames with significant anechoic speech energy. This helps to
enhance the dereverberation performance.

InFig. 7, one example is given to illustrate the effectiveness of
the proposed system to perform dereverberation. We randomly
select one utterance from Test A with the most severe reverberant

recovering the most structure of the anechoic utterance. This
demonstrates that our approach is able to remove reverberation
effects in adverse reverberant environments.

B. Evaluations at Untrained Long Reverberation Times

In order to test the performance under untrained reverberation
times, we generate a set of RIRs with reverberation times from
1.1 s to 1.5 s within the same simulated room as in Test A. Let
“Test B” denote the new test set with these long reverberation
times. The DRR values are presented in Table IV. Under longer
reverberation times and lower DRRs, we investigate the gener-
alization ability of our models to very reverberant environments.

The PESQ and SNRy,, scores are presented in Table V.
Similar performance trends are observed to those in Test A.
Although longer reverberation time conditions are not included
during training, all the systems show good generalization
to the severely reverberant environments. On average,
BLSTM, TCN, and the proposed system improve PESQ
by 0.43, 0.62, and 0.66, SNR¢,, by 7.16, 5.86, and 7.67 dB,
respectively. Again, our proposed system delivers the best
dereverberation performance. The comparisons among the
TCN, TCN+smoothing, TCN+self-attention, and proposed
system show a similar trend to that in Test A.

To evaluate the effect of the Griffin-Lim phase enhancement
algorithm in our proposed system, we resynthesize the enhanced
signals using the OLA method with the reverberant phase for
comparison. On average, for Test A, the phase enhancement
improves PESQ by 0.17 and SNR f,, by 0.13 dB; for Test B, it
improves PESQ by 0.09 and SNR,, by 0.22 dB. The results
indicate that the phase enhancement benefits speech dereverber-
ation in the magnitude spectrum by partly recovering the clean
phase.
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TABLE V
AVERAGE PESQ AND SNwa SCORES ON TEST B

PESQ SNR;,, (dB)
Teo (s) L1 12 13 14 Avg. | 11 12 13 14 15  Avg
reverb 116 1.18 1.16 1.14 1.14 1.16 | 235 154 137 102 082 142
BLSTM 171 161 162 153 149 159 | 958 932 866 8.07 7.8 858
TCN 195 1.80 183 1.70 1.64 178 | 856 770 745 642 626 7.28
TCN+smoothing 193 178 1.80 1.68 1.62 176 | 835 753 7.9 626 6.13 7.09
TCN+self-attention 1.99 1.84 1.84 172 1.65 181 | 946 869 831 726 7.01 8.15
proposed 201 185 187 173 166 1.82 | 1029 984 932 835 7.67 9.09

In addition, we investigate the performance of the proposed
system and its causal counterpart. For both systems, we directly
use the reverberant phase for simplicity. On average, for Test
A, the causal system underperforms the non-causal system by
0.22 in PESQ and by 1.06 dB in SNR,,; for Test B, the causal
version underperforms by 0.2 in PESQ and by 1.86 dB in
SNR 4.

C. Evaluations With Recorded RIRs

Test A and B used simulated RIRs. Now we evaluate the
trained systems with recorded RIRs. Note that they are different
from the later evaluations with REVERB challenge data where
measured RIRs are employed to generate training data. Three
RIRs are selected from the Aachen Impulse Response (AIR)
database [22], and resampled at 16 kHz. They were recorded in a
lecture hall, a meeting room and an office, and the corresponding
reverberation time is 0.70 s, 0.21 s and 0.37 s, respectively. A
new test set is generated using these recorded RIRs, which is
denoted by “Test C”.

Table VI shows the PESQ and SNR t,, evaluation results of
Test C. Clearly, all these systems generalize well to real re-
verberant rooms. Substantial improvements in objective metrics
are obtained over unprocessed reverberant speech. Like previous
evaluations, the proposed system outperforms the other systems,
including the alternatives with removed modules. Slightly dif-
ferent from Test A and B, TCN performs better than BLSTM in
both PESQ and SNR .

The Test C results are quite encouraging. They imply that the
models trained with simulated RIRs generalize well to recorded
RIRs, and therefore it might be sufficient to use simulated RIRs
only for training supervised speech dereverberation systems.
Infinite RIRs can be produced with a simulated RIR generator,
in order to increase the diversity of training data. Another benefit
is cost saving from having to record RIRs in real rooms.

D. Evaluations With REVERB Challenge Data

In this subsection, we evaluate the proposed algorithm on RE-
VERB challenge data described in Section III-A. As mentioned
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TABLE VI
AVERAGE PESQ AND SNR ¢,, SCORES ON TEST C

PESQ SNRy., (dB)
room lecture  meeting office ‘ lecture  meeting office
reverb 1.38 1.99 1.60 6.30 7.52 7.43
BLSTM 227 2.89 2.31 11.36 9.91 9.80
TCN 2.61 3.15 2.72 12.71 10.63 10.49
TCN+smoothing 2.59 3.14 2.72 12.75 10.64 10.49
TCN+self-attention  2.65 3.20 2.73 12.92 10.48 10.67
proposed 2.69 3.18 2.77 13.24 10.95 10.86
TABLE VII

AVERAGE PERFORMANCE OF DIFFERENT ALGORITHMS ON SIMDATA AND REALDATA OF REVERB CHALLENGE EVALUATION SET

SimData RealData
CD SRMR LLR SNRy, (dB) PESQ SRMR
reverb 3.97 3.68 0.58 3.62 1.48 3.18
WPE (1-ch) 3.74 422 0.52 4.90 1.72 3.97
WPE (2-ch) [6] 3.66 4.50 0.47 5.35 1.82 4.48
WPE (8-ch) [6] 3.63 4.64 0.46 5.48 1.89 4.55
WPE + MVDR + MMSE (8-ch) [6] 2.25 5.39 0.43 10.31 2.82 7.34
DNN (1-ch) [48] 2.50 5.77 0.50 7.55 - 4.36
WRN (1-ch) [36] 3.59 3.59 0.47 4.80 - 3.24
proposed (1-ch) 2.20 5.17 0.24 13.06 2.58 5.54

earlier, we treat the 8-ch speech as eight different 1-ch speech
recordings. The evaluation results are presented in Table VII. We
compare our system with a group of WPE-based systems [6]
and two DNN-based systems [48], [36]. Overall, our system
performs the best among the monaural systems. Surprisingly, our
algorithm performs comparably to the WPE+MVDR+MMSE
(8-ch) approach [6].

Although our algorithm is for dereverberation, the results on
the REVERB challenge indicate its robustness to some back-
ground noise. This is because the proposed model is trained
to learn a nonlinear mapping from noisy-reverberant speech to
clean-anechoic speech using data with both background noise
and room reverberation (see Secttion I1I-A). Moreover, the SNR
in this dataset is relatively high.

V. CONCLUSIONS

Reverberation creates one of the major speech distortions
in daily environments. Together with background noise, it de-
grades speech intelligibility and quality. In this study, we have
proposed a monaural CNN-based speech dereverberation algo-
rithm, which includes a self-attention module to learn a dynamic
representation, a TCN module to perform nonlinear mapping,
and a 1-D convolution smoothing module. Systematic eval-
uations demonstrate that our system suppresses reverberation
effectively and the trained model generalizes well to untrained
conditions. Although designed for dereverberation, it seems
insensitive to a moderate amount of background noise.

Future research will extend the proposed monaural algorithm
to multi-channel scenarios. With spatial information, the per-
formance of speech dereverberation is expected to be further
improved. In addition, the current study aims to perform speech
dereverberation in the spectral magnitude domain, leaving the

phase issue to postprocessing with the Griffin-Lim algorithm.
Exploring phase enhancement within the network architecture
would be another promising direction for the future.
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