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a b s t r a c t

We present a novel method for segmenting images with texture and nontexture regions. Local spectral
histograms are feature vectors consisting of histograms of chosen filter responses, which capture both
texture and nontexture information. Based on the observation that the local spectral histogram of a pixel
location can be approximated through a linear combination of the representative features weighted by
the area coverage of each feature, we formulate the segmentation problem as a multivariate linear regres-
sion, where the solution is obtained by least squares estimation. Moreover, we propose an algorithm to
automatically identify representative features corresponding to different homogeneous regions, and
show that the number of representative features can be determined by examining the effective rank of
a feature matrix. We present segmentation results on different types of images, and our comparison with
other methods shows that the proposed method gives more accurate results.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The goal of image segmentation is to partition an image into a
number of regions so that each region should be as homogeneous
as possible and neighboring ones should be as different as possible.
It is a critical task for a wide range of image analysis problems.
Although substantial progress has been made in this area (Shi
and Malik, 2000; Chan and Vese, 2001; Comaniciu and Meer,
2002; Felzenszwalb and Huttenlocher, 2004; Sharon et al., 2006;
Li et al., 2008; Wang et al., 2009), image segmentation remains
an unsolved problem in computer vision.

An image segmentation method should work on different kinds
of imagery including texture and nontexture images. It is widely
recognized that a visual texture is very difficult to characterize. A
large number of methods have been proposed to deal with texture
images. These methods address two issues: underlying texture
model that defines region homogeneity and a framework or strat-
egy for producing segmentation (Paragios and Deriche, 2002; Deng
and Clausi, 2004; Kim and Kang, 2007; Lehmann, 2011). In general
the two issues are not treated independently. A successful segmen-
tation methodology should couple an accurate texture model and
an effective segmentation strategy.

Numerous texture models have been proposed. The most suc-
cessful ones focus on the following two aspects. One is on filtering,
ll rights reserved.
which typically uses filterbanks to decompose an image into a set
of sub-bands. Filtering methods have received experimental sup-
ports on human texture perception and have shown impressive per-
formance for texture segmentation and classification (Jain and
Farrokhsia, 1991; Dunn and Higgins, 1991; Randen and Hakon,
1999; Clausi and Jernigan, 2000). The other is on statistical model-
ing, which characterizes texture regions as resulting from some
underlying stochastic processes. For example, autoregressive
models (Mao and Jain, 1992) and Markov random fields (Cross and
Jain, 1983; Cesmeli and Wang, 2001; Benboudjema and Pieczynski,
2007) emphasize global appearance and are robust to noise.

Building on the above themes, a local spectral histogram has
been proposed as a texture model, which consists of marginal dis-
tributions of chosen filter responses in an image window (Liu and
Wang, 2002). Local spectral histograms provide a generic statistic
model for texture as well as nontexture regions. Using local spec-
tral histograms as features, the segmentation problem can be ap-
proached by measuring the distance among the features (Liu and
Wang, 2006). However, since the local spectral histograms com-
puted over the windows straddling boundaries do not give dis-
tinctive features, such methods have difficulty in accurately
localizing region boundaries. As Malik et al. (2001) point out, this
problem widely exists in the approaches based on measuring tex-
ture descriptors over local windows. To address this problem,
quadrant filters or similar strategies are often employed, which
compute features from shifted local windows around a pixel
and make a best choice by examining certain criteria (Kim and
Kang, 2007; Liu and Wang, 2006). Another popular technique is
to use local windows of different sizes, also referred to as scales
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Fig. 1. Illustration of fast implementation for computing local spectral histograms.
(a) The integral histogram value at location (x,y) is the histogram of the image
window above and to the left of (x,y). (b) The histogram of region R can be
computed using four references: L4 + L1 � L2 � L3.
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(Liang and Tjahjadi, 2006; Martin et al., 2004). Boundaries are
determined by analyzing information across different scales.
Although reasonable results are achieved, these methods inevita-
bly involve more computation and hand chosen parameters.

In this paper, we propose a new segmentation method that lever-
ages local spectral histograms to discriminate region appearances
and at the same time accurately localizes boundaries. Using local
spectral histograms as features, we regard a pixel location as a linear
combination of representative features, which encodes a natural cri-
terion to identify boundaries. The relationship between features of
all the pixels and representative features is modeled by a multivar-
iate linear regression, and the segmentation problem can be directly
solved by least square estimation. The rest of the paper is organized
as follows. The local spectral histogram representation is introduced
in Section 2. Section 3 presents our segmentation algorithm in detail.
In Section 4, we show experimental results and comparisons. Sec-
tion 5 concludes the paper.
2. Local spectral histograms

Motivated by perceptual observations, the spectral histogram
model has been proposed to characterize texture appearance (Liu
and Wang, 2002). For a window W in an input image, a set of filter
responses is computed through convolving with a chosen bank of
filters {F(a),a = 1,2, . . . ,K}. For a sub-band image W (a), a bin of its
histogram can be written as

HðaÞW ðz1; z2Þ ¼
X
v
*
2W

Z z2

z1

dðz�W ðaÞðv
*
ÞÞdz: ð1Þ

Here z1 and z2 specify the range of the bin. v
*

represents a pixel loca-
tion, and d denotes the Dirac delta function. In this paper, we use 11
equal-width bins for each filter response. The spectral histogram
with respect to the chosen filters is then defined as (Liu and Wang,
2002)

HW ¼
1
jWj Hð1ÞW ;Hð2ÞW ; . . . ;HðKÞW

� �
ð2Þ

where j j denotes cardinality. The spectral histogram is a normalized
feature statistic, which can compare image windows of different
sizes. For each pixel location, the local spectral histogram is com-
puted over the window centered at the pixel. The size of the win-
dow is called integration scale. When the filters are selected
properly, the spectral histogram is sufficient to capture texture
appearance (Liu and Wang, 2002).

In this paper, we use seven filters: the intensity filter, two LoG
(Laplacian of Gaussian) filters with the scale values of 0.2 and
1.0, and four Gabor filter with the orientations of 0�, 45�, 90�,
and 135� and the scale value of 3. The parameters of filters are
not adjusted for individual images, but for a type of images a set
of filters is chosen based on general image attributes.

In order to extract meaningful texture features, the integration
scale is set to be relatively large, which makes computing local spec-
tral histograms computationally expensive. A fast implementation
method is therefore introduced in (Liu and Wang, 2002). For an input
image, an integral histogram image is defined as follows: at location
(x,y) the integral histogram is calculated using the pixel values
above and to the left of (x,y) (see Fig. 1(a)). The integral histogram
image can be efficiently computed in one pass over the image. Given
the integral histogram image, the histograms of arbitrary rectangu-
lar regions can be obtained with four references. As illustrated in
Fig. 1(b), we can compute the histogram of region R using the follow-
ing four references: L4 + L1 � L2 � L3. Hence, once the integral histo-
gram image is computed, we only need three vector arithmetic
operations to obtain any local spectral histogram regardless of
window size. A detailed description of the fast implementation
can be found in (Liu and Wang, 2002).

3. Segmentation algorithm

As discussed in Section 1, although local spectral histograms
provide an effective feature, segmentation methods using feature
distance to measure region homogeneity tend to produce inaccu-
rate boundaries caused by features extracted in image windows
that cross multiple regions. Here, we describe a new segmentation
algorithm based on linear regression, which can produce segmen-
tation with high accuracy and great efficiency.

3.1. Segmentation using linear regression

Fig. 2(a) illustrates the difficulty of extracting features over a
large window. Here, an image contains five homogenous regions.
Given a pixel location A, the corresponding local spectral histogram
is computed using a square window. Since this window straddles
two different regions, the extracted feature is not discriminative.
As a result, it is difficult to correctly classify the corresponding pix-
el by measuring feature similarity.

Let us define a window W consisting of disjoint connected sub-

regions {W1,W2, . . . ,Ws}, and HðaÞWi
is the histogram computed from

region Wi and filter a. Since HðaÞW ¼ HðaÞW1
þ HðaÞW2

þ � � � þ HðaÞWs
, we can

rewrite the spectral histogram HW as

HW ¼
1
jW j Hð1ÞW ;Hð2ÞW ; . . . ;HðKÞW

� �

¼ 1
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Xs

i¼1

Hð1ÞWi
;
Xs

i¼1

Hð2ÞWi
; . . . ;

Xs

i¼1

HðKÞWi

 !

¼ jW1j
jWj

1
jW1j

Hð1ÞW1
;Hð2ÞW1

; . . . ;HðKÞW1

� �� �

þ jW2j
jWj

1
jW2j

Hð1ÞW2
;Hð2ÞW2

; . . . ;HðKÞW2

� �� �
þ � � �

þ jW sj
jWj

1
jW sj

Hð1ÞWs
;Hð2ÞWs

; . . . ;HðKÞWs

� �� �
:

With the definition in (2), we have

HW ¼
jW1j
jWj HW1 þ

jW2j
jWj HW2 þ � � � þ

jW sj
jW j HWs : ð3Þ

Therefore, a spectral histogram of an image window can be linearly
decomposed into spectral histograms of its subregions, where
weights are proportional to region areas.

Because spectral histograms can characterize image appear-
ance, we assume that spectral histograms within a homogeneous
region are approximately constant. This assumption along with
Eq. (3) implies that the spectral histogram of a local window can
be approximated by a weighted sum of the spectral histograms



Fig. 3. Segmentation using automatically selected features. (a) Texture gradient of
the image shown in Fig. 2(a). (b) Segmentation result with the representative
features selected automatically.

(a) (b) 

A 

Fig. 2. Texture image segmentation via linear regression. (a) Texture image with
size 256 � 256. The local spectral histogram at location A is computed within the
square window. (b) Segmentation result using linear regression. Each region is
represented by a distinct gray value.

J. Yuan et al. / Pattern Recognition Letters 33 (2012) 615–622 617
of regions overlapping that window, and the corresponding pixel
can be classified into the region whose spectral histogram weighs
the most. For instance, in Fig. 2(a), the local spectral histogram at
location A can be decomposed into the spectral histograms of
two neighboring regions, and A can be segmented according to
the weights.

The above analysis is not valid in some scenarios: (1) subregions
within an image window are too small to obtain meaningful
histograms; and (2) filter scales are so large as to cause distorted
histograms in near-boundary subregions, making them different
from the constant spectral histograms of the regions that include
the subregions. However, both scenarios should have a minimal
impact for the following reasons. For the first scenario, if a subre-
gion within a window is small, it contributes little to the spectral
histogram and thus can be neglected in feature decomposition.
While it is possible that a window consists of many small
subregions, such scenarios do not occur often in an image. For
the second scenario, because the purpose of filtering in a spectral
histogram is to capture a local spatial pattern, the chosen filters
should not have large scales.

For each homogeneous region in an image, we define a repre-
sentative feature, which should be equal to the constant spectral
histogram of the region. By extending the above analysis, we
regard the local spectral histogram of a pixel location as a linear
combination of all representative features weighted by the area
coverage of each feature. Consequently, we can use a multivariate
linear regression model to associate each feature to the representa-
tive features. Given an image with N pixels, feature dimensionality
of M, and L representative features, the model can be expressed as

Y ¼ Zbþ e ð4Þ

where Y is an M � N matrix whose columns are feature vectors of all
the pixel locations, Z is an M � L matrix whose columns are repre-
sentative features, and b is an L � N matrix whose columns are
weight vectors. e is an error term.

Since the feature matrix Y and the representative feature set Z
are known, the segmentation problem boils down to estimating b

that best models the relationship between the feature matrix and
the representative features. The least squares estimate of b is given
by Johnson and Wichern (2007)

b̂ ¼ ðZT ZÞ�1ZT Y : ð5Þ

One can manually select windows at the centers of homogeneous
regions to calculate representative features, and a segmentation re-
sult is provided by examining b̂ – each pixel is assigned to the class
where the corresponding representative feature has the largest
weight. Thus, the segmentation is completed through simple matrix
operations. Fig. 2(b) shows the segmentation result of the image in
Fig. 2(a), where different segments are indicated using distinct gray
values. By counting the wrongly segmented pixels, the segmenta-
tion error rate in this case is only 1.1%.

Certain constraints should be imposed on least squares solu-
tions. For example, the sum of the weight vector of each pixel
should be equal to one, and the weight vector should be nonnega-
tive. There are solutions for least squares estimates satisfying these
constraints (Kay, 1993). However, for the sake of simplicity and
computational efficiency, we take the unconstrained solution in
Eq. (5), which gives satisfactory results in our experiments.

3.2. Automatic representative feature selection

In the segmentation algorithm presented above, representative
features are assumed to be manually given. We present an algo-
rithm to automatically select representative features correspond-
ing to homogeneous regions. The goal is to find such features
that each of them is close to a subset of all the features and they
are as different as possible from each other. A straightforward
method is to perform k-means clustering on all the features and
take cluster centers as representative features. However, the
features near boundaries can form small clusters, which make
the clustering result unstable. To address this problem, we com-
pute image gradients based on local spectral histograms and ex-
clude the features associated with large gradients from the
clustering process. Because the remaining features are expected
to be inside homogenous regions, they should yield a stable clus-
tering result.

At a pixel location (x,y), we compute the feature distance
between pixel locations (x + d,y) and (x � d,y) and that between
(x,y + d) and (x,y � d), where d is half of side length of W. The
gradient is the sum of the two distances (Liu and Wang, 2002).
We employ v2-statistics to measure the distance, which is com-
monly used with histograms,

v2ðHW1 ;HW2 Þ ¼
1
jWj

XK

a¼1

X
z

HðaÞW1
ðzÞ � HðaÞW2

ðzÞ
� �2

HðaÞW1
ðzÞ þ HðaÞW2

ðzÞ
: ð6Þ

This distance measure is also used in k-means clustering. It should
be noted that the particular form of distance measure is not critical
for spectral histograms. Other distance measures can also achieve
comparable results.

Fig. 3(a) shows the gradient of the image in Fig. 2(a), where the
gray value is proportional to the gradient. One can see that the pixels
near boundaries have large gradients. By applying k-means cluster-
ing to the features with small gradients, we obtain cluster centers as
the representative features. Fig. 3(b) shows the segmentation result
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using the resulting representative features, which is similar to the
result in Fig. 2(b). Generally speaking, because automatically
selected features pool over populations of features, they can be
more representative and produce better segmentation results than
manually selected features.

3.3. Segment number determination

A thorny issue in k-means clustering is how to determine the
cluster number, i.e. the segment number in our case. Note that
our method puts pixels with similar features into one segment
without considering the connectivity of each segment, which,
however, can be achieved via postprocessing. Here, we present a
method to determine the segment number.

For a unique solution in Eq. (4) to exist, it requires that Z have
the full column rank. In other words, representative features have
to be linearly independent in order to have a unique segmentation
solution. Since each feature is considered to be a linear combina-
tion of representative features, the rank of the feature matrix Y
should equal the rank of Z, which is exactly the number of repre-
sentative features, or the segment number. Although in real cases
the rank of Y tends to be larger than the segment number due to
image noise, we can estimate the segment number by determining
the effective rank of Y.

We employ singular value decomposition (SVD) to deter-
mine the effective rank of a matrix (Konstaintinides and Yao,
1988). The feature matrix can be decomposed into the following
form

Y ¼URVT ¼
u11 � � � u1M

..

. . .
. ..

.

uM1 � � � uMM

0
BB@

1
CCA

r11 � � � 0

..

. . .
. ..

.

0 � � � rMM

0
BB@

1
CCA

v11 � � � v1N

..

. . .
. ..

.

vN1 � � � vNN

0
BB@

1
CCA

T

:

ð7Þ

Here U and V are orthogonal matrices, where the columns of U are
the eigenvectors of the matrix YYT, and the columns of V are the
eigenvectors of the matrix YTY. The diagonal terms of the matrix
R are called singular values, which are the square roots of the eigen-
values of the matrix YYT, or YTY. The effective rank can be deter-
mined as follows. First rank the singular values, and then discard
those below a certain threshold. The number of remaining singular
values is the effective rank.

We have computed the singular values for the image in Fig. 2(a).
There are 33 singular values. The first 5 singular values are 219.0,
91.7, 63.3, 62.3, and 37.9. The remaining singular values decrease
gradually from 16.6 to 0. Hence, the first 5 values are noticeably
larger than the rest, agreeing with the number of regions in the
original image.

A few comments should be made regarding this method. Based
on the fact that YYT and YTY have the same nonzero eigenvalues,
we choose YYT to compute the singular values, which is a much
smaller matrix than YTY. When the singular values are computed,
we need to set a threshold to determine the effective rank. We
should note that in some cases the singular values are not well sep-
arated, and the threshold need to be set with respect to the type of
images.

3.4. Fast selection of representative features

Apart from estimating the segment number, the SVD of matrix Y
provides a way to reveal the underlying structure of the matrix,
based on which we propose a more efficient algorithm for extract-
ing representative features.

Assuming the effective rank of Y is r, a new matrix can be
obtained:
Yp ¼ UpRpVT
p ð8Þ

where Up and Vp consist of the first r columns of U and V in the SVD
of matrix Y, respectively. Rp is a r � r matrix with the largest r sin-
gular values on the diagonal. Yp is the optimal r-rank approximation
of matrix Y in the least-squares sense (Golub and Van Loan, 1996).
Let Z1 = Up and b1 ¼ RpVT

p . Z1 and b1 can therefore serve as a least
squares solution for the linear regression model in Eq. (4). However,
they are generally not the real solutions, due to the fact that

Yp ¼ Z1b1 ¼ Z1QQ�1
b1 ð9Þ

where Q can be any invertible square matrix.
Although the above analysis can not directly give representative

features, it leads to an important finding: the representative fea-
tures should be a linear transformation of Up, whose columns are
orthogonal vectors. In other words, the representative features lie
in an r-dimensional subspace spanned by the columns of Up. Based
on the fact that the features inside homogeneous regions are close
to the representative features, we project the features with small
gradients onto the subspace and apply k-means clustering. Because
the projection significantly reduces the feature dimension, the
clustering speed is boosted. The representative features in the ori-
ginal space can be obtained by multiplying the r-dimensional clus-
tering centers with the transpose of Up. Our experiments show that
the fast algorithm gives segmentation results very similar to those
from the original algorithm.

3.5. Steps of the algorithm

The steps of our image segmentation algorithm are summarized
below:

1. Compute local spectral histograms at each pixel location to
construct the feature matrix Y.

2. Compute the SVD, Y = URVT. Determine the segment number
r by thresholding the singular values.

3. Reduce the feature dimension by multiplying Y by Up, which
is the first r columns of U.

4. Compute the texture gradients based on the features.
5. Perform k-means clustering on the features with small gradi-

ents. The cluster centers are taken as the representative
features.

6. Solve b using (5) to obtain the segmentation result.

3.6. Smoothing effect

The proposed method has a smoothing effect on region bound-
aries. Consider a two-region image containing a zigzag boundary.
The proposed method will classify pixels according to the coverage
of two regions within their local windows. If the integration scale is
small, the resulting boundary would be close to the true boundary;
with the integration scale sufficiently large, we would obtain a seg-
mentation result with a straight boundary. Although the smooth-
ing effect may cause deviation from the true boundary, it is
interesting to note that the effect tends to reduce the total curva-
ture of boundaries. In other words, the smoothing effect amounts
to a form of regularization often formulated as an objective for
image segmentation (Caselles et al., 1997; Mumford and Shah,
1989). This smoothing effect is apparent in our experiments with
real images in Section 4.

Smoothness is controlled by integration scales. Ideally, one
should choose an integration scale that exhibits some boundary
smoothing but does not lead to over-smoothing. Different tech-
niques could be considered, e.g., decomposition stability (Fukunaga,
1990), inter-clusterversus intra-cluster variability (Kauffman and
Rousseeuw, 1990), or multiscale analysis. For instance, at each loca-
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tion in multiscale analysis one can compute spectral histograms at
multiple integration scales. By analyzing feature variations and
relationships across scales, an optimal local integration scale or a
combination of multiple scales could be identified. Such analysis
will be addressed in future work.

4. Experimental results and comparisons

4.1. Experimental results

We have applied our algorithm to different types of images.
Fig. 4 shows the segmentation results for a set of texture images
of size 340 � 340, including an image consisting of regions with
different sizes, an image containing very similar textures, and an
image with irregular-shaped regions. We use all seven filters to
calculate local spectral histograms. For the experiments in this sec-
tion, the singular value threshold and the integration scale are
determined by analyzing a subset of a class of images. Here the
integration scale is set to 25 � 25, and the singular value threshold
20. The left column shows the original images, the middle column
ground truth segmentation, and the right column our segmenta-
tion results. As we can see, the regions with different textures
are separated successfully, and the boundaries are localized well
due to feature decomposition. The inaccuracy of the boundaries
Fig. 4. Texture image segmentation. In each row, the left is the original image, the middl
integration scale used here is 25 � 25.
is mostly caused by similar texture appearances. Although texture
appearance inside some regions varies noticeably, the segmenta-
tion results are not much affected. We attribute the robustness
to both the texture features used and effective least square
solutions.

To show the influence of the integration scale on segmentation
results, we apply our algorithm to the image in Fig. 4(a) using four
different integration scales, and the results are presented in Fig. 5.
It can be observed that different integration scales affect segmen-
tation results, and some values are more favorable than others.
On a whole, the result is not very sensitive to a particular value,
and similar results are obtained over a range of values. The results
also demonstrate that the boundaries become increasingly
smoother as the integration scale increases, in agreement with
the discussion in Section 3.6.

We have also applied our method to a large number of natural
images, including the Berkeley segmentation dataset (Kauffman
and Rousseeuw, 1990). In general, orientation is not a strong cue
for segmenting natural images. Hence, we only use the intensity
filters and two LoG filters with different scales. Fig. 6 presents
our segmentation results on a set of 9 images. It can be seen that
both texture and nontexture regions are well segmented in gen-
eral. For example, in the first (zebra) image the resulting segment
by and large agrees with the true shape of the zebra, and in the per-
e is the ground true, and the right is the segmentation result using our method. The



Fig. 5. Segmentation results using different integration scales. (a) 11 � 11. (b) 17 � 17. (c) 23 � 23. (d) 29 � 29.
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son image the main components, including the eyes, the skin, and
the shirt, are successfully segmented. These two images are fre-
quently used in image segmentation literature. Without involving
any object-specific models or human intervention, our results are
comparable with the best results available (Michailovich et al.,
2007; Kokkinos et al., 2009).

4.2. Systematic evaluation and comparisons

We compare the proposed method with another spectral histo-
gram based segmentation algorithm proposed by Liu and Wang
(2006). They build probability models based on local spectral his-
Fig. 6. Natural image segmentation. In each of the 9 pairs, the left is the original image, a
here is 15 � 15.
tograms and iteratively update segmentation using the model,
and the final result is obtained by a separate boundary localization
algorithm. We refer to this method as the LW method. Fig. 7 shows
the comparison results on two natural images. To show the accu-
racy of segmentation results, the boundaries of the salient objects
are embedded in the original images. Both methods successfully
segment the objects with well localized boundaries. A closer com-
parison, however, indicates that our results have much smoother
boundaries, which should be more desirable to practical uses.

To provide a systematic assessment, we apply our algorithm to
the test images in the Berkeley segmentation benchmark (Martin
et al., 2001). For all the images, we use the intensity filter and
nd the right is the segmentation result using our method. The integration scale used



Fig. 7. Comparison between the LW method and proposed method on two natural images. In each panel, the left is the original image, the middle is the segmentation results
from the LW method, and the right is the segmentation results from our method. The region boundaries are marked in white.
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two LoG filters, and the integration scale is set to 15 � 15. We use
the bidirectional consistency errors (BCE) (Martin, 2002) to quanti-
tatively evaluate segmentation results. A local error at a pixel pi be-
tween two segmentations Sa and Sb is defined as

EðSa; Sb;piÞ ¼
jRðSa;piÞ n RðSb;piÞj

jRðSa;piÞj
ð10Þ

where R(S,pi) is the set of pixels that shares the same segment with
pixel pi in segmentation S, and nstands for set difference. Note that
E(Sa,Sb,pi) is not equal to E(Sb,Sa,pi). Given a segmentation S0 and a
set of human segmentations {S1,S2, . . . ,SH}, the BCE takes the follow-
ing form

BCEðS0Þ ¼
1
n

Xn

i¼1

min
h
fmax½EðS0; Sh; piÞ; EðSh; S0;piÞ�g ð11Þ

which compares S0 with all human segmentations and averages
over n image pixels. Kokkinos et al. (2009) use the BCE to evaluate
the performances of their method and the normalized cut algorithm
(Shi and Malik, 2000) on the benchmark. They produce the segmen-
tation results with different segment numbers and calculate the
average and median values of BCE for each case. We follow the
same evaluation scheme and summarize the results in Table 1.
We can see that the proposed method outperforms the other two
in most cases. The ‘‘optimal’’ column show the numbers calculated
using the best result of each image. The comparison shows that our
method gives the lowest BCE.
Table 1
Average/median values of BCE on 100 test images from different segmentation
algorithms.

Author Optimal 2 Segments 3 Segments 4 Segments

Proposed .37/.38 .42/.41 .46/.48 .53/.55
Kokkinos et al. .38/.39 .46/.49 .49/.51 .51/.52
N. Cuts .41/.43 .49/.51 .52/.53 .55/.53
We have further applied precision-recall measurements (Martin
et al., 2004) to the segmentation results of the benchmark images
in order to assess the accuracy of segment boundaries. Precision is
the proportion of correctly detected boundaries, and recall is the
proportion of the boundaries in human segmentation that are
detected. The harmonic mean of precision and recall, known as
the F-measure, provides a single metric. Kokkinos et al. reported
the F-measures of their results and the normalized cut results with
multiple predefined segment numbers (Kokkinos et al., 2009),
where the best scores are 0.5 and 0.42, respectively. For our meth-
od, the segment number is automatically determined by setting
the singular value threshold to 60. The average F-measure of our
results reaches 0.55, higher than their scores.

4.3. Computation time

The main steps in our algorithm, including filtering, spectral
histogram computation, and least squares estimation, take linear
time with respect to the number of pixels. In our case, we do not
need complete SVD, only the eigenvalue decomposition of YYT

which is an M �M matrix (M is the feature dimension), and then
choose the first several eigenvalues and the corresponding
eigenvectors to construct Z1. For the features with 7 filters and
11-bin histograms, YYT is a 77 � 77 matrix, and its eigenvalue
decomposition takes negligible time. The computation time can
vary for k-means clustering in representative feature selection,
but the process is generally fast because the features are well
grouped and can be projected onto a low dimensional subspace.
We have implemented the whole system using Matlab. On
481 � 321 benchmark images, our algorithm takes several seconds
to half a minute on a Pentium 1.7 GHz PC. With representative fea-
tures provided beforehand, our algorithm generally takes a fraction
of a second. Using the codes provided by the authors, the running
times of the normalized cut algorithm and the LW algorithm on
images of the same size are about 1 min and 5 min, respectively.
While Kokkinos et al. do not report computation time in Kokkinos
et al. (2009), their algorithm should have relatively high time
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complexity because it involves curve evolution using level set
methods, which is known to be time-consuming. Compared to
those algorithms, our algorithm is more efficient.

5. Conclusion

In this paper, we have developed a novel segmentation method
for images consisting of texture and nontexture regions. We use lo-
cal spectral histograms as features. Based on the observation that
each feature can be approximated by linearly combining several
representative features, we formulate the segmentation problem
as a multivariate linear regression, where the solution is given by
least squares estimation. We have also proposed algorithms to
automatically select representative features and determine their
numbers. Experiments show that our method gives more accurate
segmentation than other methods.

Although in the current version we assume that filterbanks and
integration scales are given for a type of images, fully autonomous
segmentation requires techniques for filter and integration scale
selection that are task-dependent. Adaptive filters and integration
scales may be adopted, which should be suited to the spatial struc-
ture of an image. We are currently investigating these issues along
with a multiscale treatment of the smoothing effect.
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