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Relaxation oscillations comprise a large class of nonlinear dynamical systems, and arise naturally
from many physical systems such as mechanics, biology, chemistry, and engineering. Such
periodic phenomena are characterized by intervals of time during which little happens, interleaved
with intervals of time during which considerable changes take place. In other words, relaxation
oscillations exhibit more than one time scale. The dynamics of a relaxation oscillator is illustrated
by the mechanical system of a seesaw in Figure 1. At one side of the seesaw is there a water
container which is empty at the beginning; in this situation the other side of the seesaw touches the
ground. As the weight of water dripping from a tap into the container exceeds that of the other
side, the seesaw flips and the container side touches the ground. At this moment, the container
empties itself, and the seesaw returns quictly to its original position and the process repeats.
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Figure 1. An example of a relaxation oscillator: a seesaw with a water container at one end (adapted from
(4)).

Relaxation oscillations were first observed by van der Pol (1) in 1926 when studying properties of
a triode circuit. Such a circuit exhibits self-sustained oscillations. van der Pol discovered that for a
certain range of the system parameters the oscillation is almost sinusoidal, but for a different range
the oscillation exhibits abrupt changes. In the latter case, the period of the oscillation is
proportional to the relaxation time (time constant) of the system, hence the term relaxation
oscillation. van der Pol (2) later gave the following defining properties of relaxation oscillations:

1. The period of oscillations is determined by some form of relaxation time.

2. They represent a periodic autonomous repetition of a typical aperiodic phenomenon.

3. Drastically different from sinusoidal or harmonic oscillations, relaxation oscillators
exhibit discontinuous jumps.

4. A nonlinear system with implicit threshold values, characteristic of the all-or-none law.
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A variety of biological phenomena can be characterized as relaxation oscillations, ranging from
heartbeat, neuronal activity, to population cycles; the English physiologist A.V. Hill (3) even stated
that relaxation oscillations are the type of oscillations that governs all periodic phenomena in
physiology.

Given that relaxation oscillations have been described in a wide range of domains, it would be
unrealistic to provide an up-to-date review of all aspects in this article. Thus, I choose to orient my
description towards neurobiology and emphasize networks of relaxation oscillators based on the
following two considerations (the reader is referred
to (4) for an extensive coverage of relaxation
oscillations). First, as described in the next section,
neurobiology has motivated a great deal of study on
relaxation oscillations. The second and more
important reason is that remarkable progress has
been made recently in understanding networks of
relaxation oscillators. In the next section, I describe
a number of relaxation oscillators, including the van
der Pol oscillator. The following section is devoted
to networks of relaxation oscillators, where the
emergent phenomena of synchrony and
desynchrony are the major topics. Then, I describe
applications of relaxation oscillator networks to
visual and auditory scene analysis, which are
followed by some concluding remarks.

RELAXATION OSCILLATORS

In this section I introduce four relaxation
oscillators. The van der Pol oscillator exemplifies
relaxation oscillations, and has played an important
role in the development of dynamical systems, in
particular nonlinear oscillations. The Fitzhugh-
Nagumo oscillator and the Morris-Lecar oscillator
are well-known models for describing the
conductance-based membrane potential of a nerve
cell. The Terman-Wang oscillator has underlain a
number of recent studies on oscillator networks and
their applications to scene analysis. As
demonstrated by Nagumo et al. (5) and Keener (6),
these oscillator models can be readily implemented
with electrical circuits.

van der Pol oscillator

The van der Pol oscillator can be written in the form

˙̇x + x = c(1 − x2 )ẋ (1)

Figure 2. Phase portrait and trajectory of a van der
Pol oscillator. A  Phase portrait. The x nullcline is
the cubic curve, and the y nullcline is the y axis.
Arrows indicate phase flows. B limit cycle orbit.
The limit cycle is labeled as pqrs, and the arrowheads
indicate the direction of motion.  Within the limit
cycle, qr and sp two fast pieces (indicated by double
arrowheads) and pq and rs are slow pieces. C
Temporal activity of the oscillator.  Here the x
activity is shown with respect to time.
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where c > 0 is a parameter. This second-order differential equation can be transformed to a two
variable first-order differential equation,

ẋ = c(y − f (x)) (2a)
ẏ = −x / c (2b)

Here f(x) = -x + x3/3. The x nullcline, ẋ  = 0, is a cubic curve, while the y nullcline, ẏ  = 0, is the
y axis. As shown in Fig. 2A, the two nullclines intersect along the middle branch of the cubic, and
the resulting fixed point is unstable as indicated by the flow field in the phase plane of Fig. 2A.
This equation yields a periodic solution.

As c » 1, Eq. (2) yields two time scales: a slow time scale for the y variable and a fast time scale
for the x variable. As a result, Eq. (2) becomes the van der Pol oscillator that produces a relaxation
oscillation. The limit cycle for the van der Pol oscillator is given in Fig. 2B, and it is composed of
four pieces, two slow ones indicated by pq and rs, and two fast ones indicated by qr and sp. In
other words, motion along the two branches of the cubic is slow compared to fast alternations, or
jumps, between the two branches. Fig. 2C shows x activity of the oscillator with respect to time,
where two time scales are clearly indicated by relatively slow changes in x activity interleaving with
fast changes.

FitzHugh-Nagumo oscillator

By simplifying the classical Hodgkin-Huxley equations (7) for modeling nerve membranes and
action potential generation, FitzHugh (8) and Nagumo et al. (5) gave the following two-variable
equation, widely known as the FitzHugh-Nagumo model,

ẋ = c(y − f (x) + I) (3a)
ẏ = −(x + by − a) / c (3b)

where f(x) is as defined in Eq. (2), I is the injected current, and a, b, and c are system parameters
satisfying the conditions: 1 > b > 0, c2 > b, and 1 > a > 1 – 2b/3. In neurophysiological terms, x
corresponds to the neuronal membrane potential, and y plays the aggregate role of three variables
in the Hodgkin-Huxley equations. Given that the x nullcline is a cubic and the y nullcline is linear,
the FitzHugh-Nagumo equation is mathematically similar to the van der Pol equation. Typical
relaxation oscillation with two time scales occurs when c » 1. Because of the three parameters and
the external input I , the FitzHugh-Nagumo oscillator has additional flexibility. Depending on
parameter values, the oscillator can exhibit a stable steady state or a stable periodic orbit. With a
perturbation by external stimulation, the steady state can become unstable and be replaced by an
oscillation; the steady state is thus referred to as the excitable state.

Morris-Lecar oscillator

In modeling voltage oscillations in barnacle muscle fibers, Morris and Lecar (9) proposed the
following equation,

ẋ = −gCam∞ (x)(x −1) − gK y(x − xK ) − gL (x − xL ) + I (4a)
ẏ = −ε(y∞ (x) − y) / τ y (x) (4b)

where
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m∞ (x) = [1+ tanh((x − x1) / x2 )] / 2
y∞ (x) = [1+ tanh((x − x3) / x4 )] / 2
τ y (x) =1 / cosh[(x − x3) / (2x4 )]

and x1, x2, x3, x4, gCa, gK, gL, xK, and xL are parameters. Ca stands for calcium, K for
potassium, L for leak, and I is the injected current. The parameter ε controls relative time scales of
x and y. Like Eq. (4), the Morris-Lecar oscillator is closely related to the Hodgkin-Huxley
equations, and it is used as a two-variable description of neuronal membrane properties or the
envelope of an oscillating burst (10). The x variable corresponds to the membrane potential, and y
corresponds to the state of activation of ionic channels.

The x nullcline of Eq. (4) resembles a cubic and the y nullcline is a sigmoid curve. When ε is
chosen to be small, the Morris-Lecar equation produces typical relaxation oscillations. From the
mathematical point of view, the sigmoid y nullcline marks the major difference between the Morris-
Lecar oscillator and the FitzHugh-Nagumo oscillator.

Terman-Wang oscillator

Motivated by mathematical and computational
considerations, Terman and Wang (11) proposed
the following equation,

ẋ = f (x) − y + I (5a)
ẏ = ε(g(x) − y) (5b)

where f(x) = 3x – x3 + 2, g(x) = α (1 + tanh(x
/β)), and I  represents external stimulation to the
oscillator.  Thus x nullcline is a cubic and the y
nullcline is a sigmoid, where α and β are
parameters. When ε « 1, Eq. (5) defines a typical
relaxation oscillator. When I > 0 and with a small
β, the two nullclines intersect only at a point along
the middle branch of the cubic and the oscillator
produces a stable periodic orbit (see Fig. 3A). The
periodic solution alternates between silent (low x)
and active (high x) phases of near steady-state
behavior. As shown in Fig. 3A, the silent and the
active phases correspond to the left branch (LB)
and the right branch (RB) of the cubic,
respectively. If I < 0, the two nullclines of Eq. (5)
intersect at a stable fixed point along the left
branch of the cubic (see Fig. 3B), and the
oscillator is in the excitable state. The parameter α
determines relative times that the periodic solution
spends in these two phases. A larger α results in a
relatively shorter time in the active phase.

The Terman-Wang oscillator is similar to the
aforementioned oscillator models. It is much
simpler than the Morris-Lecar oscillator, and
provides a dimension of flexibility absent in the
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Figure 3. Nullclines and trajectories of a Terman-
Wang oscillator. A  Behavior of a stimulated
oscillator. The x nullcline is a cubic and the y
nullcline is a sigmoid. The limit cycle is shown
with a bold curve, and its direction of motion is
indicated by arrowheads. LB and RB denote the left
branch and the right branch of the cubic,
respectively. B Behavior of an excitable
(unstimulated) oscillator. The oscillator approaches
the stable fixed point PI.
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van der Pol and FitzHugh-Nagumo equations. In neuronal terms, the x variable in Eq. (5)
corresponds to the membrane potential, and y the state for channel activation or inactivation.

NETWORKS OF RELAXATION OSCILLATORS

In late eighties, neural oscillations about 40 Hz were discovered to in the visual cortex (12-13).
The experimental findings can be summarized as the following: (1) neural oscillations are triggered
by appropriate sensory stimulation, and thus the oscillations are stimulus-dependent; (2) long-
range synchrony with zero phase-lag occurs if the stimuli appear to form a coherent object; (3) no
synchronization occurs if the stimuli appear to be unrelated. These intriguing observations are
consistent with the temporal correlation theory (14), which states that in perceiving a coherent
object the brain links various feature detecting neurons via temporal correlation among the firing
activities of these neurons.

Since the discovery of coherent oscillations in the visual cortex and other brain areas, neural
oscillations and synchronization of oscillator networks have been extensively studied.  Most of
these models are based on sinusoidal or harmonic oscillators and rely on all-to-all connectivity to
reach synchronization across the network.  In fact, according to the Mermin and Wagner theorem
(15) in statistical physics, no synchrony exists in one- or two-dimensional locally coupled isotropic
Heisenberg oscillators, which are similar to harmonic oscillators.  However, all-to-all connectivity
leads to indiscriminate synchrony because the network is dimensionless and loses critical
information about topology. Thus, such networks are severely limited in addressing perceptual
organization and scene analysis - the main motivations behind computational studies of oscillatory
networks - that appear to require topological relations.

Somers and Kopell (16) and Wang (17) first
realized that there is qualitative difference between
sinusoidal and non-sinusoidal oscillators in
achieving emergent synchrony in a locally coupled
network. Specifically, Somers and Kopell using
relaxation oscillators and Wang using Wilson-
Cowan oscillators (18) each demonstrated that an
oscillator network can synchronize with just local
coupling.  Note that Wilson-Cowan oscillators in
their normal parameter regime are neither sinusoidal
nor relaxation-type.

Two oscillators: Fast threshold modulation

When analyzing synchronization properties of a
pair of relaxation oscillators, Somers and Kopell
(16) introduced the notion of fast threshold
modulation. Their mechanism works for general
relaxation oscillators, including those described in
the previous section. Consider a pair of identical
relaxation oscillators excitatorily coupled in a way
mimicking chemical synapses. The coupling is
between the fast variables of the two oscillators,
and can be viewed as binary, resulting in the so-
called Heaviside coupling. The two oscillators are
uncoupled unless one of them in the active phase,
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Figure 4. Fast threshold modulation. C and CE
indicate the uncoupled and the excited cubic,
respectively. The two oscillators o1 and o2 start at

time 0. When o1 jumps up at t = t1, the cubic

corresponding to o2 is raised from C to CE. This

allows o2 to jump up as well. When o2 jumps

down at t = t2, the cubic corresponding to o1 is

lowered from CE to C. This allows o1 to jump

down as well.  In the figure, LK and RK indicate
the left knee and the right knee of C, respectively.
LKE and RKE indicate the left knee and right knee

of CE, respectively.
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and in this case the effect of the excitatory coupling is to raise the cubic of the other oscillator by a
fixed amount.

Let us explain the mechanism of fast threshold modulation using the Terman-Wang oscillator as an
example. The two oscillators are denoted by o1 = (x1, y1) and o2 = (x2, y2), which are initially in
the silent phase and close to each other with o1 leading the way as illustrated in Fig. 4. Figure 4
shows the solution of the oscillator system in the singular limit ε → 0. The singular solution
consists of several pieces. The first piece is when both oscillators move along LB of the uncoupled
cubic, denoted as C. This piece lasts until o1 reaches the left knee of C, LK, at t = t1. The second
piece begins when o1 jumps up to RB, and the excitatory coupling from o1 to o2 raises the cubic
for o2 from C to CE as shown in the figure. Let LKE and RKE denote the left and right knees of
CE. If |y1 - y2| is relatively small, then o2 lies below LKE and jumps up. Since these interactions
take place in fast time, the oscillators are effectively synchronized in jumping up. As a result the
cubic for o1 is raised to CE as well. The third piece is when both oscillators lie on RB and evolve
in slow time. Note that the ordering in which the two oscillators track along RB is reversed and
now o2 leads the way. The third piece lasts until o2 reaches RKE at t = t2. The fourth piece starts
when o2 jumps down to LB. With o2 jumping down, the cubic for o1 is lowered to C. At this time,
if o1 lies above RK, as shown in Fig. 4, o1 jumps down as well and both oscillators are now in the
silent phase. Once both oscillators are on LB, the above analysis repeats.

Based on the fast threshold modulation mechanism, Somers and Kopell further proved a theorem
that the synchronous solution in the oscillator pair has a domain of attraction in which the approach
to synchrony has a geometric (or exponential) rate (16). The Somers-Kopell theorem is based on
comparing the evolution rates of the slow variable right before and after a jump, which are
determined by the vertical distances of an oscillator to the y nullcline (see Fig. 4).

A network of locally coupled oscillators

In the same paper Somers and Kopell suspected that their analysis extends to a network of
relaxation oscillators, and performed numerical simulations with one-dimensional rings to support
their suggestion. In a subsequent study, by extending Somers and Kopell analysis, Terman and
Wang proved a theorem that for an arbitrary network of locally coupled relaxation oscillators there
is a domain of attraction in which the entire network synchronizes at an exponential rate (11).

In their analysis, Terman and Wang employed the time metric to describe the distance between
oscillators. When oscillators evolve either in the silent phase or the active phase, their distances in
y in the Euclidean metric change; however, their distances in the time metric remain constant. On
the other hand, when oscillators jump at the same time (in slow time), their y distances remain
unchanged while their time distances change. Terman and Wang also introduced the condition that
the sigmoid for the y nullcline (again consider the Terman-Wang oscillator) is very close to a step
function (11), which is the case when β in Eq. (5) is chosen to be very small. This condition
implies that in the situation with multiple cubics the rate of evolution of a slow variable does not
depend on which cubic it tracks along.

LEGION networks: Selective gating

A natural and special form of the temporal correlation theory is oscillatory correlation (19),
whereby each object is represented by synchronization of the oscillator group corresponding to the
object and different objects in a scene are represented by different oscillator groups which are
desynchronized from each other. There are two fundamental aspects in the oscillatory correlation
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theory: synchronization and desynchronization. Extending their results on synchronizing locally
coupled relaxation oscillators, Terman and Wang used a global inhibitory mechanism to achieve
desynchronization (11). The resulting network is called LEGION, to stand for Locally Excitatory
Globally Inhibitory Oscillator Networks (19).

The original description of LEGION is based on Terman-Wang oscillators, and basic mechanisms
extend to other relaxation oscillator models. Each oscillator i is defined as

ẋi  = f (xi ) − yi + Ii + Si +ρ (6a)

ẏi = ε(g(xi ) − yi ) (6b)

Here f(x) and g(x) are as given in Eq. (5). The parameter ρ denotes the amplitude of Gaussian
noise; to reduce the chance of self-generating oscillations the mean of noise is set to -ρ. In addition
to test robustness, noise plays the role of assisting desynchronization.  The term Si denotes the
overall input from other oscillators in the network:

Si = ∑
k∈ N(i)

   Wik H(xk – θx) – Wz H(z – θz)   (7)

where Wik is the dynamic connection weight from k to i, and N(i) is the set of the adjacent
oscillators that connect to i. In a two-dimensional (2-D) LEGION network, N(i) in the simplest
case contains four immediate neighbors except
on boundaries where no wrap-around is used,
thus forming a 2-D grid. This architecture is
shown in Fig. 5. H stands for the Heaviside
function, defined as H(v) = 1 if v ≥ 0 and
H(v) = 0 if v < 0. θx is a threshold above
which an oscillator can affect its neighbors. Wz
is the weight of inhibition from the global
inhibitor z, whose activity is defined as

ż  = φ (σ∞ – z)            (8)

where φ is a parameter. The quantity σ∞ = 1 if
xi ≥ θz for at least one oscillator i, and σ∞ = 0
otherwise. Hence θz (see also Eq. (7))
represents a threshold.

The dynamic weights Wik's are formed on the basis of permanent weights Tik's according to the
mechanism of dynamic normalization (20-21), which ensures that each oscillator has equal overall
weights of dynamic connections, WT, from its neighborhood. According to reference (11), weight
normalization is not a necessary condition for LEGION to work, but it improves the quality of
synchronization. Moreover, based on external input Wik can be determined at the start of
simulation.

To illustrate how desynchronization between blocks of oscillators is achieved in a LEGION
network, let us consider an example with two oscillators that are coupled only through the global
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Figure 5. Architecture of a two dimensional
LEGION network with nearest neighbor coupling.
The global inhibitor is indicated by the black circle,
and it receives excitation from every oscillator of
the 2-D grid and feeds back inhibition to every
oscillator.
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inhibitor. Each oscillator is meant to correspond to
an oscillator block that represents a pattern in a
scene. The same notations introduced earlier are
used here. Again, assume that both oscillators are
in the silent phase and close to each other with y1
< y2, as shown in Fig. 6. The singular solution of
the system consists of several pieces, where the
first one lasts until o1 reaches LK at t = t1. When
both oscillators are on LB, z = 0. The second
piece starts when o1 jumps up, and when o1
crosses θz, σ∞ switches from 0 to 1, and z → 1
on the fast time scale. When z crosses θz, the
cubic corresponding to both o1 and o2 lowers
from C to CZ, the inhibited cubic. The third piece
is when o1 is the active phase, while o2 is in the
silent phase. The parameters are chosen so that CZ
intersects with the sigmoid at a stable fixed point
PZ along LB as shown in Fig. 6. This guarantee
that o2 → PZ, and o2 cannot jump up as long as
o1 is on RB, which lasts until o1 reach the right
knee of CZ at t = t2. The fourth piece starts when
o1 jumps down to LB. When o1 crosses θz, z →
0 in fast time. When z crosses θz, the cubic
corresponding to both o1 and o2 returns to C.
There are now two cases to consider. If o2 lies below LK, as shown in Fig. 6, then o2 jumps up
immediately. Otherwise both o1 and o2 lie on LB, with o2 leading the way. This new silent phase
terminates when o2 reaches LK and jumps up.

The above analysis demonstrates the role of inhibition in desynchronizing the two oscillators: o1
and o2 are never in the active phase simultaneously. In general, LEGION exhibits a mechanism of
selective gating, whereby an oscillator, say oi, jumping to its active phase quickly activates the
global inhibitor, which selectively prevents the oscillators representing different blocks from
jumping up, without affecting oi's ability in recruiting the oscillators of the same block because of
local excitation. With the selective gating mechanism, Terman and Wang proved the following
theorem. For a LEGION network there is a domain of parameters and initial conditions in which
the network achieves both synchronization within blocks of oscillators and desynchronization
between different blocks in no greater than N cycles of oscillations, where N is the number of
patterns in an input scene. In other words, both synchronization and desynchronization are
achieved rapidly.

The following simulation illustrates the process of synchronization and desynchronization in
LEGION (19). Four patterns - two O 's, one H , and one I , forming the word OHIO - are
simultaneously presented to a 20x20 LEGION network as shown in Figure 7A. Each pattern is a
connected region, but no two patterns are connected to each other. The oscillators under
stimulation become oscillatory, while those without stimulation remain excitable. The parameter ρ
is set to represent 10% noise compared to the external input. The phases of all the oscillators on the
grid are randomly initialized. Fig. 7B-7F shows the instantaneous activity (snapshot) of the
network at various stages of dynamic evolution. Fig. 7B shows a snapshot of the network at the
beginning of the simulation, displaying the random initial conditions. Fig. 7C shows a snapshot
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Figure 6. Selective gating with two oscillators
coupled through a global inhibitor. C and CZ
indicate the uncoupled and the inhibited cubic,
respectively. The two oscillators o1 and o2 start at

time 0. When o1 jumps up at t = t1, the cubic

corresponding to both o1 and o2 is lowered from C

to CZ. This prevents o2 from jumping up until o1
jumps down at t = t2 and releases o2 from the

inhibition. LK and RK indicate the left knee and the
right knee of C, respectively. PZ denotes a stable

fixed point at an intersection point between CZ and

the sigmoid.
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shortly afterwards. One can clearly see the effect of synchronization and desynchronization: all the
oscillators corresponding to the left O are entrained and have large activity; at the same time, the
oscillators stimulated by the other three patterns have very small activity. Thus the left O is
segmented from the rest of the input. Figure 7D-F shows subsequent snapshots of the network,
where different patterns reach the active phase and segment from the rest. This successive
"popout" of the objects continues in an approximately periodic fashion as long as the input stays
on. To provide a complete picture of dynamic evolution, Fig. 7G shows the temporal evolution of
every oscillator. Synchronization within each object and desynchronization between them are
clearly shown in just three oscillation periods, which is consistent with the theorem proven in (11).

    A         B  C

    D  E  F

  G

Left O

Pattern H

Pattern I

Right O

Inhibitor

Time

Figure 7. A  A scene composed of four patterns which were presented (mapped) to a 20x20 LEGION
network. B A snapshot of the activities of the oscillator grid at the beginning of dynamic evolution. The
diameter of each black circle represents the x activity of the corresponding oscillator. C  A snapshot taken
shortly after the beginning. D  Another snapshot taken shortly after C . E Another snapshot taken shortly
after D. F Another snapshot taken shortly after E. G The upper four traces show the combined temporal
activities of the oscillator blocks representing the four patterns, respectively, and the bottom trace shows
the temporal activity of the global inhibitor. The ordinate indicates the normalized x activity of an
oscillator. Since the oscillators receiving no external input are excitable during the entire simulation
process, they are excluded from the display. The activity of the oscillators stimulated by each object is
combined into a single trace in the figure. The differential equations were solved using a fourth-order Runge-
Kutta method. (from (19))
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Time delay networks

Time delays in signal transmission are inevitable in both the brain and physical systems. In local
cortical circuits, for instance, the speed of nerve conduction is less than 1mm/ms such that
connected neurons 1 mm apart have a time delay of more than 4% of the period of oscillation
assuming 40 Hz oscillations. Since small delays may completely alter the dynamics of differential
equations, it is an important to understand how time delays change the behavior, particularly
synchronization, of relaxation oscillator networks.

Recently, Campbell and Wang (22) studied locally coupled relaxation oscillators with time delays.
They revealed the phenomenon of loose synchrony in such networks. Loose synchrony in
networks with nearest neighbor coupling is defined as follows. Coupled oscillators approach each
other so that their time difference is less than or equal to the time delay between them. They
analyzed a pair of oscillators in the singular limit ε → 0, and gave a precise diagram in parameter
space that indicates regions of distinct dynamical behavior, including loosely synchronous and
antiphase solutions. The diagram points that loose synchrony exists for a wide range of time delays
and initial conditions. Numerical simulations show that the singular solutions derived by them
extend to the case 0 < ε « 1. Furthermore, through extensive simulations they conclude that their
parameter diagram for a pair of oscillators says much about networks of locally coupled relaxation
oscillators. In particular, the phenomenon of loose synchrony exists in a similar way. Figure 8
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0 200 400 600 800 1000

Figure 8. Loose synchrony in a chain of 50 relaxation oscillators (from (22)). This network achieves
loose synchrony and stability by the third period of oscillation.
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demonstrates loosely synchronous behavior in a chain of 50 oscillators with a time delay that is 3%
of the oscillation period between adjacent oscillators. The phase relations between the oscillators in
the chain become stabilized by the third cycle.

Two other results regarding relaxation oscillator networks with time delays are worth mentioning.
First, Campbell and Wang (22) identified a range of initial conditions in which the maximum time
delays between any two oscillators in a locally coupled network can be contained. Second, they
found that in LEGION networks with time delay coupling between oscillators, desynchronous
solutions for different oscillator blocks are maintained. Thus, the introduction of time delays does
not appear to impact the behavior of LEGION in terms of synchrony and desynchrony.

APPLICATIONS TO SCENE ANALYSIS

A natural scene generally contains multiple objects, each of which can be viewed as a group of
similar sensory features. A major motivation behind studies on oscillatory correlation is scene
analysis, or the segmentation of a scene into a set of coherent objects. Scene segmentation, or
perceptual organization, plays a critical role in the understanding of natural scenes. Although
humans perform it with apparent ease, the general problem of scene segmentation remains
unsolved in sensory and perceptual information processing.

Oscillatory correlation provides an elegant and unique way to represent results of segmentation. As
illustrated in Fig. 7, segmentation is performed in time; after segmentation, each segment pops out
at a distinct time from the network and different segments alternate in time. On the basis of new
insights into synchronization and desynchronization properties in relaxation oscillator networks,
several recent studies have directly addressed the scene segmentation problem.

Image segmentation

Wang and Terman (21) have studied LEGION for segmenting real images. In order to perform
effective segmentation, LEGION needs to be extended to handle images with noisy regions.
Without such extension, LEGION would treat each region, no matter how small it is, as a separate
segment, and result in many fragments. A large number of fragments degrade segmentation
results, and a more serious problem is that it is difficult for LEGION to produce more than several
(5 to 10) segments. In general, with a
fixed set of parameters, LEGION can
segment only a limited number of
patterns (11). This number depends
on the ratio of the times that a single
oscillator spends in the silent and
active phases; see, for example, Figs.
3 and 7. This limit is called the
segmentation capacity of LEGION
(21). Noisy fragments therefore
compete with major image regions for
becoming segments, and the major
segments may not be extracted as a
result. To address this problem of
fragmentation, they introduced a
notion of lateral potential for each
oscillator, which allows the network
to distinguish between major blocks
and noisy fragments. The basic idea is

B

Figure 9. Image segmentation (from (21)). A A gray-level image
consisting of 160x160 pixels. B Result of segmenting the image in
A . Each segment is indicated by a distinct gray level. The system
produces 23 segments plus a background, which is indicated by the
black scattered regions in the figure.

A
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that a major block must contain at least one oscillator, denoted as a leader, which lies in the center
area of a large homogeneous image region. Such an oscillator receives large lateral excitation from
its neighborhood, and thus its lateral potential is charged high. A noisy fragment does not contain
such an oscillator.

More specifically, a new variable pi, denoting the lateral potential for each oscillator i is introduced
into the definition of the oscillator (cf. (6)). pi → 1 if i frequently receives a high weighted sum
from its neighborhood, signifying that i is a leader, and the value of pi determines whether or not
the oscillator i is a leader. After an initial time period, the only oscillators which can jump up
without lateral excitation from other oscillators are the leaders. When a leader jumps up, it spreads
its activity to other oscillators within its own block, so they can also jump up. Oscillators not in
this block are prevented from jumping up because of the global inhibitor. Without a leader, the
oscillators corresponding to noisy fragments cannot jump up beyond the initial period. The
collection of all noisy regions is called the background, which is generally discontiguous.

Wang and Terman have achieved a number of rigorous results concerning the extended version of
LEGION (21). The main analytical result states that the oscillators with low lateral potentials will
become excitable after a beginning period, and the asymptotic behavior of each oscillator belonging
to a major region is precisely the same as the network obtained by simply removing all noisy
regions. Given the Terman-Wang theorem on original LEGION, this implies that after a number of
cycles a block of oscillators corresponding to a major region synchronizes, while any two blocks
corresponding to different major regions desynchronize. Also, the number of periods required for
segmentation is no greater than the number of major regions plus one.

For gray-level images, each oscillator corresponds to a pixel. In a simple scheme for setting up
lateral connections, two neighboring oscillators are connected with a weight proportional to
corresponding pixel similarity. To illustrate typical segmentation results, Fig. 9A displays a gray-
level aerial image to be segmented. To speed up simulation with large number of oscillators needed
for processing real images, Wang and Terman also abstracted an algorithm that follows LEGION
dynamics (21). Fig. 9B shows the result of segmentation by the algorithm. The entire image is
segmented into 23 regions, each of which corresponds to a different intensity level in the figure,
which indicates the phases of oscillators. In the simulation, different segments rapidly popped out
from the image, as similarly shown in Fig. 7. As can be seen from Fig. 9B, most of the major
regions were segmented, including the central lake, major parkways, and various fields. The black
scattered regions in the figure represent the background that remains inactive. Due to the use of
lateral potentials, all these tiny regions stay in the background.

Auditory segregation

A listener in a real auditory environment is generally exposed to acoustic energy from different
sources. In order to understand the auditory environment, the listener must first disentangle the
acoustic wave reaching the ears. This process is referred to as auditory scene analysis, or auditory
segregation. According to Bregman (23), auditory scene analysis takes place in two stages. In the
first stage, the acoustic mixture reaching the ears is decomposed into a collection of sensory
elements. Secondly, elements that are likely to have arisen from the same source are grouped to
form a stream that is a perceptual representation of an auditory event.

Auditory segregation was first studied from the oscillatory correlation perspective by von der
Malsburg and Schneider (14). They constructed a fully connected oscillator network with an ad
hoc oscillator model, each representing a specific auditory feature. Additionally, there is a global
inhibitory oscillator introduced to segregate oscillator groups. With a mechanism of rapid
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modulation of connection strengths, they simulated segregation based on onset synchrony, i.e.,
oscillators simultaneously triggered (by a stream) synchronize with each other, and these
oscillators desynchronize with those representing another stream presented at a different time.
However, due to global connectivity that is unable to encode topological relations (see Sect. 3),
their model cannot simulate the basic phenomenon of stream segregation.

By extending LEGION to the auditory domain, Wang proposed an oscillator network for
addressing stream segregation (24). The basic architecture is a 2-D LEGION network, where one
dimension represents time and another one represents frequency. It has been shown that this
network, plus systematic delay lines, can group auditory features into a stream by phase
synchronization and segregate different streams by desynchronization. The network demonstrates a
set of psychological phenomena regarding auditory scene analysis, including dependency on
frequency proximity and temporal proximity, sequential capturing, and competition among
different perceptual organizations (23).

Recently, Brown and Wang (25) used an array of relaxation oscillators for modeling the perceptual
segregation of double vowels. It is well documented that the ability of listeners to identify two
simultaneously presented vowels is improved by introducing a difference in fundamental frequency
(F0) between the vowels. Prior to the oscillatory array, an auditory mixture is processed by a well
established auditory peripheral model that may be regarded as a bank of bandpass filters (peripheral
channels), which decompose an acoustic signal into a number of frequency bands. Following
peripheral modeling is periodicity detection, which identifies the periodicity present in each channel
by computing a correlogram, which is a running autocorrelation of simulated auditory nerve firing
in each peripheral channel. Each oscillator in the array receives an excitatory input from its
corresponding frequency channel. In addition, each oscillator sends excitation to a global inhibitor
which in turn feeds back inhibition. The global inhibitor ensures that weakly correlated groups of
oscillators desynchronize to form different streams. Figure 10 shows an example of separating two
concurrent vowels (25), /ah/ (F0 = 100 Hz) and /er/ (F0 = 126 Hz). For this mixture with a F0
difference of four semitones, listeners perform well in identifying both vowels. Sixty-four
peripheral channels are used in the simulation. Figure 10A shows the activity of the array of 64
oscillators. As indicated in the figure, the array quickly segregates to two synchronized groups,
within each of which the active phases of the oscillators overlap significantly. Each synchronized
group corresponds to a set of correlogram channels that define the formant of a vowel; see Figs.
10B and 10C.
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Figure 10. Double vowel segregation (adapted from (25)). The input mixture consists of two
simultaneous vowels /ah/ (F0 = 100 Hz) and /er/ (F0 = 126 Hz). A  shows the two oscillator groups that
are quickly formed in an array of 64 oscillators, each of which corresponds to a peripheral frequency
channel. The x activity of each oscillator is displayed with respect to time. B Segregated correlogram
channels that define the formants of the vowel /ah/. C  Segregated correlogram channels that define the
formants of the vowel /er/. These correlogram channels correspond to the frequency channels in the
oscillator array. Correlogram activity is shown with respect with time lags.
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Brown and Wang have performed systematic simulations on a vowel set used in psychophysical
studies, and confirmed that the results produced by their oscillator array qualitatively match the
performance of human listeners; in particular vowel identification performance increases with
increasing difference in F0. As illustrated in Fig. 10, a concept emerging from their study is the
use of relaxation oscillators as "gates" on their corresponding auditory channels. Specifically, the
activity in a channel contributes to the percept of a sound source only when the corresponding
oscillator is in its active phase.

CONCLUDING REMARKS

Relaxation oscillations are characterized by more than one time scale, and exhibit qualitatively
different behavior than sinusoidal or harmonic oscillations. Such distinction is particularly
prominent in synchronization and desynchronization in networks of relaxation oscillators. These
unique properties in relaxation oscillators have led to new and promising applications to neural
computation, especially scene analysis. It should be noted that networks of relaxation oscillations
often lead to very complex behaviors other than synchronous and antiphase solutions. Even with
identical oscillators and nearest neighbor coupling, traveling waves and other complex
spatiotemporal patterns can occur (26).

Relaxation oscillations with a singular parameter lend themselves to analysis by singular
perturbation theory (27). Singular perturbation theory in turn yields a geometric approach to
analyzing relaxation oscillation systems, as illustrated in Figs. 4 and 6. Also based on singular
solutions, Linsay and Wang (28) recently proposed a fast method to numerically integrate
relaxation oscillator networks. Their technique, called the singular limit method, is derived in the
singular limit ε → 0. A numerical algorithm is given for LEGION network, and it produces
remarkable speedup compared to commonly used integration methods such as the Runge-Kutta
method. The singular limit method makes it possible to simulate large-scale networks of relaxation
oscillators.

Computation using relaxation oscillator networks is inherently parallel, where each single oscillator
behaves fully in parallel with all the other oscillators. This feature is particularly attractive in the
context that an image generally consists of many pixels (e.g. 512x512), and current computer
technology can support massive parallel computations. The network architecture such as the one
shown in Fig. 5 performs computations based on only connections and oscillatory dynamics. The
organizational simplicity plus continuous-time dynamics renders oscillator networks particularly
feasible for VLSI chip implementation. With its computational properties plus biological
plausibility, oscillatory correlation promises to offer a general computational framework.
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