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~ This paper presents ;a general ‘purpose L. Introduction

- Simulation Language for modeling Of o During recent years there has been a resurgence of
Neural Networks (SLONN) which has - interest in the study of neural networks. This interest has
been implemented in our laboratory. Based - been driven by the desire to reach a better understanding of

how the brain works and to develop more intelligent
systems. Computer simulation of neural networks has
twofold significance. One is on the side of computational
neuroscience: neural networks which are carefully con-
structed to be consistent with neurobiological data are used
to form theories of neural structures responsible for certain
animal behaviors. For example, much work has been done
on visuomotor mechanisms of toad and frog by neural
modeling (Arbib and Lara, 1982; Cervantes, et al., 1985).
- Another is on the side of neural computing: a single neuron
“used to specify bbth small and largé 'neurall o isviewed asa computir}g unit which can be connected to
~ s . : . and work in parallel with other units so as to solve certain
. networks effectively. This language is problems. In this paradigm neural networks do not have to
- distinguished by its hierarchical organiza- . bebiologically plausible but must perform effective
 tion, which makes ztposszbleto Catch very -~ computations (Rumelhart and McClelland, 1986;
general ;ispects af highEi‘ levels as well as . McClelland and .Rumelhart, 1986; prpmann,.l987).
o VI e Y e : o Although behaviors of neural networks are diverse, three
. very specific properties at lower levels. As things are crucial: a neuron model which serves as a comput-

on a new neuron model, SLONN can
- _represent both spatial and temporal -
- summation of a single neuron and
~ synaptic plasticity. By introducing fork to
- describe a connection pattern between
neurons and by using repetition connec-
- tion, module type and module array to

- specify large networks, SLONN can be

- an example to \demoinstrjate some features "~ ing unit; a connection pattern which connects the computing
" of SLONN, we have modeled the habitua- = units to form a specific network; and a learning rule which is

“tion and sensitization behaviors in - used for modifying connection weights in order to update
S R network behaviors in a certain way.

Aplysia. S In order to facilitate the work of constructing neural
networks and carrying out simulation experiments on a
O SN 3 computer, i.e., to provide an easy environment for modelers
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model, learning rule, module array,
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neural network modeling. Users of SLONN can define
specific neuron models and connect neurons together in a
very convenient way. With the help of presynaptic connec-
tion to a synapse, SLONN provides four basic learning
forms: habituation, sensitization, conditioning and facilitation.
Also short-term memory and long-term memory are
modeled with a single S-shaped curve.

The remaining part of this paper is organized in this way.
Section I provides a brief description of the two neuron
models implemented in SLONN. Section III describes the
language features of SLONN. Section IV demonstrates some
of these features through an example. Finally in Section V,
we sumimarize this project and compare it with some
related work and propose the direction of future research.

II. Underlying Neuron Model

In order to meet the needs of both neurobiological
modelers and researchers in artificial neural networks, two
different types of neuron model are provided in SLONN:

(1) Empirical model. This model is based on typical
biological data (Brazier, 1977; Schmidt, 1979; Stein, 1982),
and the idea here is to provide a neuron model very close
to biological neurons.

(2) Leaky-integrator model. This model takes the assump-
tion of a linear relation between the change of membrane
potential and the whole input to the neuron. This model
has been widely used in neural network modeling.

Empirical neuron model

Generally, a single neuron model receives N inputs x(t),
..r X (t) through N corresponding synapses Spyerr Sy @and
each S, can be connected upon by a presynaptic synapse S*
which receives input x*(t), as shown in Fig.1A. The function
of a presynaptic synapse depends on the type of the
synapse it projects on. For an fixed synapse (defined later),
presynaptic synapse provides presynaptic inhibition; and
for a memory synapse (defined later), it modulates the weight
of the synapse it projects on. Weights of S, and 5 are
denoted as W, and W * respectively, which range from -1.0

to 1.0. The output and all inputs of the model are binary,
but the effect of each input is a graded function of time. In
SLONN, states of all neurons are changed synchronously at
discrete time. We assume that there is a uniform clock
interval, A, which is the interval between two consecutive
system states.

Unlike other neuron models, an incoming impulse x,(t)
(or x*()) generates an EPSP (excitatory post-synaptic
potential) or IPSP (inhibitory post-synaptic potential) as
shown in Fig.1B, depending on the sign of W, (or W*). The
temporal courses for the EPSP and IPSP are defined by
functions £ (t) and £,(t) which usually last for several A’s.
EPSP and IPSP form the basis for temporal summation over
a synapse. The membrane potential m(t) and final output of
the model are given by

m(t)= 3 3 Uit +E M

output(t) = H (m(t)) @

where E is the resting potential of the neuron model and
U, (t) is the contribution of input x(t-rA) at synapse 5, to the
neuron membrane potential, formulated differently in terms
of an ordinary synapse and memory synapse. output(t)
which is in form of firing spikes is generated from a
membrane potential by a threshold function H, which
equals 1 when m(t) is larger than or equal to 6 (threshold
value) and 0 otherwise (a step function). Value c is chosen
so that the neuron sums up all the EPSP’s or IPSP’s, whose
time courses depend partly on ¢, induced by incoming
impulses in the most recent cA time interval.

For any fixed synapse (meaning that synaptic weight
does not change), the effect is as might be expected when
there is no presynaptic activity:

W, ex(t-rA)* f (xA) if W20, W,*=0
U, r(t) = 3)

-W ex(t-rA)e f,(rd) if W<0, W>*=0

X, (1)

output(t)
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Figure 1. A. Diagram of the empirical neuron model. B.Typical curves of an EPSP and an IPSP created by a single incoming impulse.

70 SIMULATION AUGUST 1950



In the situation that thereisa presynaptic projection, we
only consider presynaptic inhibition since no presynaptic
excitation has been observed yet:

Max(0, Wi *x(t-rA)ef (rA) - Wrex*(t-rA)e f(ra))

if WPO' W<0

U,r(t) = )]
undefined otherwise

For a memory synapse (meaning that synaptic weight
varies over time, recorded as Wi(t)):

Wit-ra) ex(t-rA) e f(ra) if W>0
Uty = 5)
undefined otherwise

where W(0) = W, the initial synaptic weight defined by
the user when specifying a network. In this case, the role of
a presynaptic connection, if any, is to modulate W (t)
(defined later) and it has no direct contribution to the
postsynaptic neuron. Therefore in the above formula there
is nothing to say about presynaptic connections.

In the model three curves are introduced for each
memory synapse in order to describe the learning rule
whichis reflected in the varying course of W.(D). First,
learning (acquisition) is described by an S-shaped curve
(recorded as f (1)) which satisfies the following equation,

d
dt W w?

and y =y, when t = t,. Parameter k is the slope at the
inflection point (where the second-order derivative of the
curve equals 0), and W is an initial synaptic weight. Fig.2A
shows a typical curve. Since the S-shaped curve has two
varying stages depending on the sign of the second-order
derivative and a single turning point: inflection point, this
property of the S-shaped curve matches the two forms of
memory so that both short-term memory (STM) and long-
term memory (LTM) are represented by a single curve and
the transfer of short-term memory to long-term memory
corresponds to the memory value going beyond the
inflection point. This conforms with the view that short-
term and long-term memory can be thought externally as
the two forms of a common mechanism (Castelluccietal,,
1978; Wingfield and Byrnes, 1981). The Ebbinghaus curve
(1913), shown in Fig. 2B, for long-term retention of
nonsense syllables memory is used in this model with
replacement of some constants by parameters (recorded as

fO):
We G
y =

S = 7

logH+G
where G and d are parameters. For the short-term memory,
the curve discovered by Peterson and Peterson (1959) for
short-term retention of nonsense syllables with numbers,
which is shown in Fig. 2C, is used to represent short-term
retention in this model. The curve, recorded as JAGRT
formulated as follows,

—‘g’-—(l-—ﬁ/’ﬁ) ift<P

0 otherwise

y= ®

where parameter P represents the length of short-term
memory. It should be mentioned that f.(t) and £,(t) are the
experimental memory curves at the behavioral level. We use
these two curves as memory models at the synaptic level
since no data for synaptic memory are ready to be used.
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Figure 2. A. Diagram of an S-shaped curve f<(t). B. The Ebbinghaus
curve of long-term memory retention for nonsense syllables (from
Ebbinghaus, 1913). C. The curve of short-term memory retention
(from Peterson and Peterson, 1959).
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In order to describe W(t) based on the above three curves,
we use a memory function M((t) which increases as a
learning stimulus z(t) is acting upon the synapse 5,

(e, z(t)=1) and decreases a~ z(t) = 0. The decrease of M(t)
follows different processes in terms of STM or LTM, which
are represented by a state variable L(t) such that L(t) =0
when the synapse is in “training state” (STM) and L(t) =1
when the synapse is in “learned state” (LTM). The dynam-
ics of M(t) and L(t) is given in Appendix. SLONN provides
four learning types for each memory synapse which use the
same memory curves defined above:

1° Habituation: W(t) decreases ifx(=1

W (t) = Max(0, W - M(1)) &)
z(t) =x(t)

2° Sensitization: W(t) increases ifx*t =1

W(6) = Min(1, W + M(0) (10)
z(H) =x()

3° Conditioning: W (1) increases if x(t) =1 Ax*() = 1.

W) = Min(1, W + M(®) an
z(®) = x B *x O

4° Facilitation (Hebbian rule, see Hebb 1949): W (t) increases
ifx(t) =1 A output(ty =1.

W) =Min(1, W+ M) . 12)
z( B =x(t)e output(t)

During learning, the memory value of a synapse raises
according to acquisition curve f((t). Otherwise the memory
value goes down (forgetting) in terms of short-term or long-
term memory: once the value of f(t) goes above its inflec-
tion point, later forgetting will follow the long-term
retention curve f.(1); otherwise it will follow the short-term
retention curve f (t) (see Appendix for details).

Compared to other neuron models (for example, see
McCulloch and Pitts, 1943; Caianiello, 1961), there are two
new features in this model. First it takes temporal summa-
tion into consideration. Temporal summation is important
in temporal information processing. Another feature is the
learning mechanism, which will be reflected later in the
example. Some other neuronal characteristics, suchas
synaptic delay, are also modeled. The complete description
of this model is given in Wang and Hsu (1988).

Leaky Integrator model

The fundamental equation describing the dynamics of the
membrane potential m(t) for a neuronin the leaky integra-
tor model is of the form:

dm(t)
dt

mc = —Km(t) + I{t) 13

where mc and K are the membrane constant and I(t) the
weighted sum of excitatory and inhibitory inputs. The
output of the neuron is formed by (same as formula (2))
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output(t) = H(m(t))

Here the threshold function H, can take several forms
such as a step function or sigmoid function, as chosen by
the user. The analytical solution to equation (13) fora
constant input I is:

m(t) = 1 + (m(0)- _I__)e-—Kt/mc (14)
K K

where m(0) is the initial value of m(t) and I represents the
constantinput.

However, the overall input I(t) is generally not a constant
and could contain m(t) itself as in feedback situation, so we
cannot guarantee an analytical solution. SLONN adopts the
following method for an approximate solution (Smith,
1987):

m(t+AbL) = (l—j)-I(—t)—» + jem(t)
K as)
with j = e/

where At is a parameter with the constraint of being
multiple of the system clock interval A. That this difference
equation does match the analytical solution can be shown
by removing the recursion and comparing it to the analyti-
cal solution given in (14). A more extensive discussion of
this method is given by Smith (1987).

IIL. Language Description

SLONN isa very high-level non-procedural language
implemented in C under the UNIX operating system, and
its syntax definition is supported by YACC and LEX
software utilities in UNIX (Bell Laboratories, 1983). The use

_of these standard software utilities, which use a revised

Backus-Naur form as format, makes SLONN specification
concise and easy to extend.

A SLONN program is composed of four serial parts:
constant part (optional), neuron definition part (optional),
network definition part, and execution part. A user can define
in the constant part a set of identifiers as constants and
assign them values as in conventional languages. The
neuron definition part is for users to define specific neuron
models other than the standard models provided in the
system. An entire network is described in the network
definition part. Finally, the user controls actual simulation
runs in the execution part.

In terms of network description, any neural network can
be specified in SLONN in three steps:

1. Definition of single neurons. Using neuron definition
statements, a user can describe specific neuron types with
particular properties, such as neuron parameters, and
specific shapes of the curves described in Section I1.

2.Small network. By introducing the fork statement to
describe connection patterns, SLONN can naturally
represent both the divergent connection (one neuron
makes synapses on many neurons) and the convergent
connection (many neurons make synapses on one



neuron), which are the two typical ways of connection in
the nervous system.

3. Large network. SLONN provides repetition connection
(for), module type (module) and module array for de-
scribing large networks.

In what follows, we are not going to provide a full descrip-
tion of the language, but instead attempt to give the reader
the flavor of the language and its capabilities through
incomplete program examples. Let us note that all system
reserved words appear underlined in the text.

Neuron Specification

There are’two ways to specify a single neuron: (1) by
providing a standard neuron type neur. The parameters of
the standard neuron are assigned with system defaults. (2)
by providing both neuron and leaky statements, which
represent empirical and leaky integrator models respectively,
for users to define their desired neuron types. As we have
seen before, many aspects of the two neuron models can be
adjusted by users. Below is an example (in the remainder of
this paper, example programs will appear in a smaller font
and indented, and anything enclosed by ’/* and ™/’ is
ignored by the SLONN parser),

neural
neuron ntypel {
theta = 45.0; /* threshold value */
tc=78;
}
leaky ntype2 {
delta_t=3; /* At in formula (15) */

Tsigma (1.0, 3.0, 1.7, 0.0);
}

neur nl, n2, n3;

ntypel pearl[8, 8];

ntype?2 pear2[8, 8];
The above segment defines two neuron types: ntypel and
ntype2, where ntypel is the empirical neuron model which
" has the parameter theta equal to 45.0. The time constant fc (¢
in Eq.1) of ntypel, which determines the length of the EPSP
or IPSP, is equal to 78. ntype? is a neuron type of the leaky-
integrator model with At equal to 3A and threshold function
being Tsigma (standing for a sigmoid threshold function)
with parameters k1 =1.0,k2=3.0,k3=1.7, and k4 =0.0.
The sigmoid function is defined as follows:

kd if x <k
2
Tsigma (0 =) ka4 |(XKD (k3k)P L 260kD) (k3-kd),
k2-k1 | k2 - ki
ifx>kland x <k2
k3 ifx2k2

Neurons appearing in the network specification must be
declared with a type (either neur or user defined type
names) beforehand. Neurons n1, n2 and n3 are of the
standard empirical type; pear1[8,8] is an 8x8 matrix of
neurons with the type ntype2; and pear2[8,8] with type
ntype2. In SLONN a multi-dimensional neuron array (layer)
can be specified just like a single neuron.

In the following sections we will leave out detailed
properties of single neurons, and view them as abstract
nodes in a neural network. We will concentrate on how
nodes are connected together to form a network.

Network Connection: fork and for Statements

Two steps are taken to define a neural network. The first
step is to define a connection type (link) by means of the
fork statement, which specifies branches and their weights
as well as connection direction. The second step is to
associate neuron instances with a connection type to form a
concrete neural network. For example,

fork 3 (to 0.5, 0.6, 0.7): triple;
triple(nl; n2, n3, n4);

The first statement forms a connection pattern triple where
the number 3 indicates three branches and the reserved
word to indicates that the connection direction is from one
efferent neuron to many afferent neurons (an opposite
direction is indicated by another reserved word from). The
second statement indicates that n1 is an efferent neuron and

. n2,n3, n4 are afferent neurons; the weights of the synapses

that n1 makes on n2, n3, and n4 (0.5, 0.6, 0.7 respectively)
are given by triple. The network described is shown in Fig.
3A. Type triple can be used many times, e.g., triple(g1; g2, g3,
g4); will form another network shown in Fig. 3B. The
following example shows how to specify memory synapses,

neur sen, mov, intn;

fork 1(to <0.45, habit>): tree;
fork 1(to <0.5, sensa>): ftom;
tree (sen, mov);

itom (intn; <sen, mov>);

A value-symbol pair within a fork statement specifies a
memory synapse whose initial weight is designated by the
value and learning type by the reserved symbol, while a
symbol-symbol pair indicates a synapse from the neuron
named by the first symbol to the neuron named by the
second symbol. In the above example, habit indicates
habituation and sensa indicates sensitization (defined in
Egs. 9 and 10). Fig. 3C shows the constructed network.

Figure 3. Examples of networks. Here a circle represents a neuron;
symbols in a dircle indicate neuron names; numbers or constant

names (soma, dendr) are synaptic weights.

In order to support iterative connections (particularly
useful for layered networks) using the same fork, the
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language provides a repetition connection statement for.
The for statement can be used in a similar way as in
conventional languages. For instance,

integer i;

neur n[7};

fork 2(to soma dendr): beta;

i=(0for2)

beta(nl[i]; n[2i+1], n[2i+2]);

The for statement indicates that the pattern beta repeats for
3 times and i takes value of 0, 1, 2 in sequel. Identifiers soma
and dendr are the system constants standing for standard
axon-soma and axon-dendrite connections repectively. The
resulting network is depicted in Fig. 3D.

Module Type

A module type is used to define a sub-network which
appears more than once in the network to be specified. The
idea for introducing module type is to establish levels in
specifying networks. A module is itself a neural network,
but it can also be viewed as a single node at a higher level.
A module can be constructed by other modules too. The
following example shows the format of module definition.

MODULE spade

spade snetl, snet2, snet3;

defines a module type spade which is described in braces in
the same way as any network. The last statement declares
three subnetworks: snet1, snet2 and snet3 with the type
spade. Module type can naturally reflect network concepts
such as layers, clusters etc., and elementary regular struc-
tures in the animal nervous system such as cortical columns.
In a certain sense, the module concept is similar to the
subroutine structure in conventional languages. A concrete
module example is given in the next subsection.

Module Array

A module array is an array (up to 3 dimensions) of
modules. Two particular treatments are taken for this
module array: (1) The connections between neighboring
modules of an array, called outer connections, need not be
explicitly described. (2) The connections which do not
project to any neurons will be cut off from a module array
automatically. At most six directions are provided for
connecting neighboring modules. The semantics of these
directions is self-defined. For a 1-dimensional array, the
corresponding outer connected directions are: right, left; for
a 2-dimensional array, the corresponding directions: right,
left, front, hind; and for a 3-dimensional array, the corre-
sponding directions: right, left, front, hind, above, below. 1f
there are connections beyond neighboring modules, the for
statement can always be used to specify connections
between any modules in a module array. To demonstate the
capability of the module array declaration, an example is
given below, and the resulting network is shown in Fig. 4.

74 SIMULATION AUGUST 1990

module star
{
neur n[9];
fork 4(to dendr): alpha; /* This equals fork 4 (to dendr,
dendr, dendr, dendr): alpha; */
fork 4(to soma): beta;
fork 4(from soma): gamma;
right
alpha(n[4]; n[0], n[2], n[5], n[7]);  /* This con-~
nects n{3] in
one module to
nf0], nl2], n[5],

left and n[7] inits
right neigh-
boring module
*/
alpha(n[4}; n[1], n[3], n[6], n[8]);
front
alpha(n[4]; n[0], n[1], n[5], n[6});
hind
alpha(n[4]; n[2], n[3], n[7], n{8]);
above
alpha(n[4]; n[5], n{6], n[7], n[8D;
below

alpha(n[4]; n[0], n[1], n[2], n[3]);
/* what is defined beneath inner
are the connections within a
module */

gamma(n[4]; n[0], n[1], n[2], n[3]);

beta(n{4]; n[5], n[6], n[7], n[8]);

inner

star networkI8, 8, 8]; /* This statement
builds a neural network
which has 512 modules
connected together as
shown in Fig.4 */

front

Figure 4. A 3-dimensional module array. A. The whole neural
network formed by the declaration of the above SLONN program
segment. This network consists of 8x8x8 modules connected
together. B. One typical module which is a subnet composed of 9
neurons, connected with its six neighbors. The connections to this
module are omitted for clarity.



Input and Output Description

Inputs to a neural network are represented by impulse
trains of sensory neurons, which consist of 0 or 1, indicating
impulse presence. Two methods are provided for defining
any impulse train:

1. Users can describe input patterns directly as binary
trains. For example, optic = (011}:3 defines a stimulus
composed of 3 repetitions of {011}, i.e. 01101101 1}.

2. Users can define random patterns by means of system
functions which make intervals between consecutive
impulses satisfying certain stochastic distributions.
Random generators, such as uniform, exponential (Poisson
process), and normal distributions, etc., are provided as
built-in functions in SLONN.

The defined impulse trains are exerted on sensory nodes
through the statement of stimulate, for example:

neur skin, head;
stimulate (skin, head <- {001}:3);

defines two sensory neurons: skin, kead which are stimu-
lated by stimulus {011011011).

Output is reflected by graphic display of activities of
neurons, which includes membrane potential and firing
pattern. The graphic function of SLONN is implemented in
the Suncore utility. Four different display forms are
provided: so-called 1-dimensional, which shows firing states
of a set of single cells; 2-dimensional, which shows firing
states of a matrix of cells; 3-dimensional, which givesa
snapshot of activities of a matrix of neurons; and 4-dimen-
sional, which shows activities of a matrix of cells over a
period of time. All these kinds of display are specified in
statement display. As an example, the 2-D display in Fig. 5
comes from this statement “display (2; model{8,8])”, where

2 indicates 2-D. This item is optional, and 1-D is the default.

Figure 5 provides a typical 2-D and 3-D display.

In addition to the display of neuronal activities, a user
can also show or change any part of the neural network
described, such as synaptic weights, values of memory
synapses, and neuronal parameters.

Execution Control

Once a neural network and its input and display have
been specified, the user can start simulation process by the
statement:

simulate (expr)

where expr gives the length of simulation (in steps). The
specified network will run for expr cycles, within each of
which all neurons in the network will be updated once. The
output is displayed while the simulation is running.

To meet various modeling requirements, some other
control statements have been implemented. For example, a
temporal jump statement “last (expr)” is designed to facilitate
the simulation with long-term memory. By using analytic
solutions of memory curves instead of step by step simula-
tion, this statement brings the network into the state expr
cycles (1 cycle = 10004) later when there is no stimulus.
Another example is serial execution which allows a series of
simulations on a single network. This is done with state-
ment “reset”, which sets the network to its initial state (the

‘state before simulation is carried out).

As a summary of the description of the language, Fig. 6
shows the SLONN system organization which illustrates
internal processes for executing a user program. One
limitation with the current version which can be easily seen
from the diagram is the compiled nature of SLONN
program. We will discuss this later in Section V.

IV. An Example

The following simple example provides a small system of
neurons which has been implemented and run using
SLONN. This simulation aims at neural modeling of
learning behaviors of habituation and sensitization in
Aplysia. While our purpose is to illustrate how to use
SLONN to develop neural modeling and not to go into
detailed physiology of Aplysia, it helps to know some
experimental results. Through the work by Kandel and his
colleagues, we know that when a stimulus is applied to the
siphon (sensory skin), Aplysia’s gill contracts and withdraws
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Figure 5. Sample of 2-D and 3-D display from the SLONN system. The display in the left side is a sample output of a 2-D frequency ordering
model. Each small box shows the temporal response of a neuron. The display in the right side is a 3-D snapshot of the response of a matrix

of neurons to a two-spot stimulus.
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Figure 6. System organization of the SLONN language

into the mantle cavity (Kandel, 1976). This behavior is called
the defensive gill-withdrawal reflex. Two simple learning
forms can be demonstrated with this reflex: habituation and
sensitization. Habituation is a decrease in the strength of a
behavioral response that occurs when an initially novel
stimulus is presented repeatedly. Sensitization, however, is
the prolonged enhancement of an animal’s preexisting
response to a stimulus as a result of the presentation of a
second noxious stimulus. They found that habituation and
sensitization in Aplysia give rise to both short- and long-
term memory. In the following, we are going to model these
learning behaviors. Through a group of simulations we will
see that the SLONN model is capable of reproducing
learning behaviors in Aplysia.

Behavior and Neural Model

According to their findings, after a single training session
of from 10 to 15 tactile stimuli to the siphon the withdrawal
reflex habituates, but this habituation is short-lived.
However four repeated training sessions of only 10 stimuli
each produce long-term habituation. They find that short-
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term habituation involves a transient decrease in synaptic
efficacy and long-term habituation produces a more
prolonged and profound change (Castellucdi, et al., 1978).
The data demonstrate that short-term and long-term
habituation can share a common locus, namely the synapses
the sensory neurons make on the motor neurons.

When an Aplysia is presented with a noxjous stimulus to
the head, the gill-withdrawal reflex response to a repeated
stimulus to the siphon is greatly enhanced. According to
Castellucci and Kandel (1976), sensitization entails an
alteration of the synapses made by the sensory neurons on
the motor neurons. The neurons mediating sensitization
end near the synaptic terminals of sensory neurons (presyn-
aptic synapse). So the same locus—the presynaptic termi-
nals of sensory neurons—can therefore be regulated in
opposite ways by the opposite forms of learning.

We simplify and remould the suggested Aplysia neural
network underlying the learning behaviors (Kandel, 1979)
into the model shown in Figure 7 followed by a segment of
SLONN program which specifies the model. The detailed
synaptic weights have to be determined during the simulation.



@ @ Aplysia’s neural model

Figure 7. Simplified model of the unilateral neural network of
Aplysia. Synapses are represented by arrowheads, neurons by
circles. The names within a circle indicate the neuron names.
Symbols S, 5, S * and S.* are synapse names, and S*and 5,*
indicate presynaptic synapses.

neural /* neuron definition part*/
neuron typel {
tc="5;
1
net /* network definition part*/

{
typel siphon, senl, sen2, intn;
typel fintl, fint2, head, mov1, mov2, gill;

fork 2(to 0.55): branch;

fork 1(to <0.45, habit>): tree;
fork 2(to 0.05): itom;

fork 2(from 0.38): mtos;

fork 1(to <0.5, sensa>): ftom;

branch(siphon; senl, sen2);
branch(head; fintl, fint2);
tree(senl; movl);
tree(sen2; mov2);
itom(intn; mov1, mov2);
mtos(gill; movl, mov2);
ftom(fint1; <senl, mov1s);
from(fint2; <sen2, mov2>);
}

Simulation Results

The simulation is performed by stimulating sensory cells:
siphon and head, and the response of neuron gill represents the
gill-withdrawal reflex. We tested the above model by 12
simulations. In the following, we give an exposition of certain
experiments, then provide a relevant segment of SLONN
code for simulating the experimental result, and finally
present the corresponding simulation result. In the simula-
tion, the stimulus for testing the gill-withdrawal reflex, called
touch, and the training stimulus, called train, are described

below.
begin /* beginning of execution part */

string touch, train;
touch = {0011100};
train = {0010111};

gill

Gijl =

Lo-G

Figure 8, A. Gill-withdrawal reflex. The response of neuron gill
when cell siphon is stimulated with a period of tactile stimulus. The
curve indicates the varying course of membrane potential. When a

- potential is greater than the threshold the neuron membrane

generates an impulse which is represented by a vertical bar. B.
Spontaneous gill contractions and simultaneous excitation of the
LD-G motor cell (from Kupfermann and Kandel 1969).

The only reason for choosing these stimulus patterns is to make
the firing of neuron gill easy to be viewed. Therefore we can
basically reproduce the following results using a different group
of stimulus patterns. The gill-withdrawal reflex was tested first
for later comparison.

/* simulation 1: a gill-withdrawal reflex */

stimulate(skin <- touch: 12; head <- {0});

display(gill);

simulate(80);
Fig. 8A shows the simulated gill-withdrawal reflex before any
training. At this time the firing frequency of gill is 4/7. In Fig. 8B,
a typical response of a motor neuron which innervates the gill of
Aplysia, is provided for giving a sense of what the real response
looks like.

As mentioned before, a single training session of from 10 to 15
tactile stimuli habituates the withdrawal reflex. But this is a short-
term habituation. The shortest time in which full recovery
occurred was 10 minutes, whereas the longest time in which the
response was not fully recovered was 122 minutes (Pinsker et al,,
1969). The test of this short-term habituation was done with the
following two simulations, and the result is shown in Fig. 9. Note
that for each execution session initiated by a statement simulate
the input and output for the current session is specified by a
program segment between the current simulate statement and
the previous simulate statement.

/* simulation 2: training for short-term memory */

stimulate(skin <- train: 9; head <- {0});
simulate(65);
stimulate(skin <~ touch: 12; head <- {0));
display(gill);
simulate(80);
/* simulation 3: test for short-term forgetting */

last(2000); /* for temporal jump, cf. Section 111 */
stimulate(skin <- touch: 12; head <- {0});

display(gill);

simulate(80);
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Figure 9. A. The gill-withdrawal reflex after the model is exposed
to a period of tactile stimulus (9 trainings). B. Following A, the gill-
withdrawal reflex after a silence (no stimulus) for 2,000,000 A’s (one
A corresponds to about 2ms).

The response in Fig. 9A, which is the reflex after 9 trainings
to siphon, decreases from 4/7 to 1/7. Here one training
corresponds to one tactile stimulus in the experiment. The
habituation is exhibited in this model due to tactile training.
In Fig. 9B, we can see that the learned habituation has been
“forgotten” after about 60 minutes. This, comparable with
real data, shows that the previous habituation is short-lived.

If several (four or more) training sessions are given,
habituation is retained for days or weeks (Carew et al., 1972).
Fig. 10A provides the average retention curve. The followmg
code is for training a long-term habituation and testing its
retention. The corresponding output is shown in Fig. 10B, C,
D.

/* simulation 4: training for long-term memory */
stimulate(skin <- train: 36; head <- {0});
/*stimulationd:training for long-term memory" /
simulate(36*7);

stimulate(skin <- touch: 12; head <- {0});

display(gill);

simulate(80);

/* simulation 5: test for short-term retention */
1ast(2000);

stimulate(skin <- touch: 12; head <- {0});

display(gill);

simulate(80);

/* simulation 6: test for long-term forgetting */
1ast(1000000);
stimulate(skin <- touch: 12; head <~ {0});
display(gill);
simulate(80);

In the simulation on the left, we raised the training amount to
36 trainings, four times as many as before. We seein Fig. 10B, gil!
cannot generate any impulses and the model falls into a
profound habituation. In Fig. 10C, gill is still inactive after 60
minutes forgetting. Compared to Fig. 9B, this result demonstrates
that a long-term habituation occurs. In Fig. 10D, a considerable
forgetting occurs after 3 weeks silence, The firing frequency of gill
(3/7) is close to the pretraining one, This is the result of long-term
forgetting, and comparable in general with the experimental data
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Figure 10. A. Time course of habituation. Habituation within each
daily session is expressed as a single score, the sum of ten trials.
The following retention is compared with control habituation, the
upper dashed line (from Carew et al., 1972). B. The gill-withdrawal
reflex after the model is trained with a period of tactile stimulus (40
trainings). C. The gill-withdrawal reflex after a silence for 2,000,000
A’s. D. Following the previous simulation, the gill-withdrawal
reflex after a silence for 10° A’s (about 3 weeks).

given in Fig. 10A. In terms of the above neuron model, the
training amount with 36 trainings is sufficient to bring the f(t)
curves corresponding to synapses S, and S, in Fig. 7 above their
inflection points, i.e. L{t) =1 after this training session.

The reflex response can be abruptly enhanced for many
minutes if a single strong sensitizing stimulus is applied to the
head, and a long-term sensitization due to repeated stimuli can
last for several weeks, similar to long-term habituation (Pinsker et
al,, 1969). In the following simulation, we only tested for long-
term sensitization, and the short-term one can be obtained with
less training in the similar way as in the above habituation
training. The corresponding code is provided below, and the
result is shown in Fig. 11.

/* simulation 7: reset, then test for gill-withdrawal reflex
*/
reset;
stimulate(skin <~ touch: 12; head <- {0});
display(gil);
simulate(80);
/* simulation 8: training for sensitization */
stimulate(skin <- touch: {0}; head <- train: 25);



simulate(25*7);

stimulate(skin <- touch: 12; head <- {0));
display(gill);

simulate(80);

/* simulation 9: test for long-term forgetting */
1ast(1000000);
stimulate(skin <- touch: 12; head <- {0});
display(gill);
simulate(80);

In Fig. 11A, the gill-withdrawal reflex is brought to the
pretraining state. Now we can see the effect of sensitization in
Fig. 11B dueto 25 trainings to neuron head, where the firing
frequency of gill raises from 4/7 to 6 /7, a remarkable
enhancement. Fig. 11C shows the forgetting of sensitization
after 3 week silence, which exhibits a complete restoration
of the reflex.

gill

gill

gill

Figure 11. A. The gill-withdrawal reflex after the model is initiated.
B. The reflex after neuron head is stimulated with 25 trainings. C.
Following the above simulation, the gill-withdrawal reflex after a
silence for 3 weeks.

Can sensitization counteract the profound depression in
the reflex produced by long-term habituation? This ques-
tion was examined and the answer is yes. The synapses that
were functionally inactivated were restored within an hour
by a sensitizing stimulus to the head (Carew et al., 1971). In
our final simulations, this phenomenon was tested by the
following code, and the result is given in Fig. 12.

/* simulation 10: form habituation */
reset;
stimulate(skin <- train: 36; head <- {0});
simulate(36*7);

gill

gill

gill

Figure 12. A. The response of neuron gill after the model is initiated

and then given the same training as in simulation 4. B. Following
A, the gill-withdrawal reflex after neuron head is presented with a
period of stimulus (16 trainings). C. Following B, the gill-with-
drawal reflex after head is further stimulated with 23 trainings.

stimulate(skin <- touch: 12; head <- {0});
display(gill);
simulate(80);

/* simulation 11: training for sensitization */
stimulate(skin <- {0}; head <- train: 16);
simulate(16*7);
stimulate(skin <- touch: 12; head <- {0});
display(gill);
simulate(80);

/* simulation 12: sensitization, again */
stimulate(skin <- touch: {0}; head <-train: 23);

simulate(23*7);

stimulate(skin <- touch: 12; head <- {0});

display(gill); :
simulate(80);

end /* end of execution part */

In Fig. 124, the reflex is trained to be deeply habituated
as in the preparation of simulation 4. In Fig. 12B, the
response of gill returns to the pretraining state due to 16
trainings to the head neuron. This simulation shows that
sensitization awakes the behavior which has been de-
pressed by habituation. Note that two memory curves
(M,(1)), a major curve and a minor curve, are introduced at one
memory synapse to model two learning forms interacting at
the same synapse. The result in Fig. 12C demonstrates that
sensitization further enhances the reflex after it reverses the
depressed behavior.
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Table 1. Parameter values of the learning curves.

Name and corresponding t(6)  y,(6) G
formula number

d@ P@)

Value 10 wW/2 W8 20 100A

Table 1 shows the parameter values of various learning curves
that we used in this example. In summary, this simulation series
demonstrates that the proposed model of Aplysia allows us to
replicate the following learning properties:

* habituation of gill-withdrawal reflex to a repetitive
presentation of a stimulus;

« short-term and long-term habituation are due to

different amount of training, and these two stages of
habituation share a common locus;

* sensitization (facilitation) of gill-withdrawal reflex due
to a noxious stimulus to the head;

» sensitization shares the same locus as with habituation

~(acting at a presynaptic synapse), and counteracts the

profound depression in the reflex produced by long-term
habituation.

The reason that we are interested in these simple forms of
learning is that they may form a basis for more sophisticated
learning processes. Recent studies indicate that the cellular
mechanism underlying classical conditioning of the Aplysia
siphon withdrawal reflex is an extension of the mechanism
underlying sensitization (Hawkins et al.,, 1983). Hawkins and
Kandel (1984) made a theoretical effort to construct some more
complex learning processes from habituation and sensitization, and
their suggestion for constructing associative learning was later
tested by a computational model (Gluck and Thompson, 1987).
Without changing any overall language structures, SLONN can
be used to reproduce their simulation results by adding some
equations they used for their modeling.

V. Discussion

SLONN is developed in a UNIX environment and written in C
as well as YACC and LEX. It was first implemented ina
Fortune/32 at Peking University, Beijing, and now runs on a Sun
workstation in the Brain Simulation Laboratory of the University
of Southern California. SLONN has been designed with
specification capability as the top criterion. Any kind of connec-
tion patterns among neurons (or more generally units) can be
specified in SLONN effectively.

Through many years of effort in the computer simulation of
neural models, quite a few simulation systems for neural
networks, and connectionist models, have been proposed to
assist developing computer simulations. Earlier representative
examples include PABLO (Perkel 1976a; Perkel and Smith 1976;
Perkel 1976b), and BOSS (Wittie 1978a, b). PABLO is a simulation
program for networks of synaptically interacting neurons which
havea variety of physiological properties, such as absolute and
relative refractoriness, pacemaker activity, post-inhibitory
rebound, and so on. This system is only useful for small neuronal
networks, since it is based on a very detailed neuron model and
has no abstract spedification for constructing a network. BOSS, on
the other hand, is a system of routines designed to set up and
simulate large models of regular neural structures such as
cerebellar cortex, mainly by introducing decomposition schemes
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and parameterization schemes. These early systems are not
general enough to meet requirements of various modelers, for
example, no general specification language is provided. Also
they lack powerful system supports like graphics.

More recently, some general purpose simulation systems have
been developed for connectionist models (parallel distributed
processing systems). These include P3 (Zipser and Rabin, 1986),
Rochester Connectionist Simulator (RCS) (Fanty, 1986; Goddard
et al,, 1987), and MIRRORS/ 1L (I’ Autrechy et al., 1988). Com-
pared to earlier simulation systems, these recent simulators are
more general-purpose and environment-like. They are not
mainly oriented to neural modeling. For example, they have
units, sites and links or connections instead of neurons, synapses and
axons. The user has to program functions or methods that are
used by units to form their outputs. In summary, these simula-
tion systems are more oriented to artificial neural networks.
Table 2 summarizes certain features of these recent simulation
lan .

SLONN can be characterized as a sort of combination of eartier
systems for neural networks and recent systems for connectionist
models. It has a high-level, non-procedural network specification

. language, and therefore is more similar to recent systems in this

sense. Although in SLONN we still use terminologies like
neurons and synapses, it can be readily used in simulation of
connectionist models because of the structural characteristic of
SLONN. In fact, in the first implementation of the language only
the empirical neuron model was available. Later we easily added
the leaky integrator model into the system without destroying
any of the original system features. While SLONN is a general
purpose language, it also reflects many detailed properties of
neurophysiology. In this aspext, it is more comparable to earlier
simulation systems designed mainly for neurobiologists, like
PABLO. During the system design period, we absorbed many
features from other network simulation languages like the SPICE
simulation language for electrical circuits (Vladimirescy, 1980)
and OCCAM for describing communications between concur-
rent processes (INMOS, 1983). SLONN is more powerfulin
describing large networks than those languages because it views
a network module as a unit and provides the module array
specification.

SLONN achieves both generality and specificity by a key
feature of the language: higrarchy. We divide the task of develop-
ing neural networks into three rather independent levels: single
neurons, network modules, and networks. We can change single
neuron models while specifications at module level and network
level remain unchanged. The same is true for module level and
network level. The inclusion of the leaky integrator model
demonstrates these characteristics. In implemention, each neuron
is represented in the system by an item in a neuron array.
Originally each item had only one pointer which points toa
structure of parameters that are required for defining the
empirical neuron model. Later for adding the leaky integrator
model, we added another pointer into each item of the neuron
array. This new pointer will point to a structure of parameters
necessary for defining a leaky integrator neuron model if the
corresponding neuron type is leaky integrator. Then we wrotea
C routine to create the output of a neuron according to formula
(13). That is basically all we need to do in order to add a new
neuron model, and based on the type of a neuron the system will
choose a specific routine when updating the neuron. In addition,
in SLONN, we separate neuron types vs. concrete neurons and
connection patterns vs. concrete networks. This hierarchical
structure of the system can providea very general purpose



specification at the highest level, while it can also capture very
detailed properties at the lowest level. Another important
advantage of the hierarchical structure is in extensibility. Because
each level is relatively independent of the others, new features
and functions can be included into the system without updating
the whole system. The use of the YACC and LEX utilities also
contributes considerably to the extensibility of SLONN, since it is
very easy to add new system functions through the interface
provided by YACC and LEX.

As mentioned before, the current SLONN system only
provides compilation for the sake of speed of execution. The
unfortunate result is that the user cannot control network
execution interactively. Also, the user cannot add new functions,
for instance a new threshold function, into the SLONN system
directly. These and some other undesirable aspects of the
language will be overcome in the next version of SLONN.

We have long argued about whether it is possible and
beneficial to build a single very general purpose and powerful
simulation language for neural networks (including
connectionist models). Our opinion on this issue is that with
hierarchical structure t is possible to develop a very general
simulation language without sacrificing much specificity, and we
think that SLONN lays a good ground for this effort*.
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Appendix. Formulation of M;(t) and L,(t)

Equation (6) has the following analytical solution:

y= Wyo (A1)

—}O + (W "}0) e—(4k/W) [(38:0)]

Before formulating M,(t) and L(t), the following three
transient functions are defined:

h(y) = f(f(y) + A) (A2)
hy(y) = folf ) + ) (A3)
h(y) = f(f, () + &) (A.4)

where argument y represents the memory value of
synapse 5. The meaning of these three transient func-
tions is depicted in Fig.Ala,b,c respectively.

to t t+A Tt

-~

b .———

t+A t

Figure A1 a. The meaning of h(y); b. The meaning of hy(y); c. The
meaning of h,(y).




According to (7), (8) and (A1), itis straightforward to
obtain:

hs (y)= w : (A5)
1+(W ) e —4AKW”
y W1
hg (y)= WG — (A6)
(og (10PN And L
and
2y 2
hp=W 14/ -2 y2 4 A A
Ply > W N (A7)
Finally we define:
h(M(®)  ifz(H=1
Mt+8) = hM®) ifz®=0, Li=1 (A.8)
h(M() iz =0,L(H=0
0 LD =0,M(t+A4) < W/2
Lt+A)= (A9)
1 L =1o0r M(t+4)>W/2

Value L(t) is determined by whether value M,(t) grows
above the inflection point (where M;( t) =W/2) or not, and
Lt will not return to the “training state” once it leaves it.

DELIANG WANG was born in Anhui, the
People's Republic of China on January 27,
1963. He received the B.S. degree and the
M.S. degree in Computer Science from

i Peking University, Beijing, China, in 1983
% and 1986 respectively. From July 1986 to
"21 December 1987 he was with the Institute of
"2 Computing Technology, Academia Sinica,
Beijing, China. He is currently completing a
Ph.D. degree in Computer Science at the
University of Southern California, Los
Angeles, California.

His present research interests include neural mechanisms of
visuomotor coordinations, temporal sequence learning using neural
networks, visual pattern perception, and neural simulation
systems.

CHOCHUN HSU received his BS. degree in
. * Computational Mathematics from Peking

* University, Beijing, China in 1957. He is
+ currently a chairman and professor of the
Department of Computer Science and
.. Technology, Peking University.
Professor Hsu was a member of the
- faculty of the Mathematics Department and
Electronics Department of the same univer-
sity, before joining the Department of
" Computer Sdence and Technology. He is the
coauthor of Principles of Computer Organization and Data Structure
published by the Academic Press in Beijing, and the author or
coauthor of numerous technical Ppapers. His current interests are
Knowledge Engineering and Information Systems.

AUGUST 1990 SIMULATION 83



&



