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The goal of this paper is to show how to modify associative memory 
such that it can discriminate several stored patterns in a composite in- 
put and represent them simultaneously. Segmention of patterns takes 
place in the temporal domain, components of one pattern becoming 
temporally correlated with each other and anticorrelated with the com- 
ponents of all other patterns. Correlations are created naturally by the 
usual associative connections. In our simulations, temporal patterns 
take the form of oscillatory bursts of activity. Model oscillators consist 
of pairs of local cell populations connected appropriately. Transition 
of activity from one pattern to another is induced by delayed self- 
inhibition or simply by noise. 

1 Introduction 

Associative memory (Steinbuch 1961; Willshaw et al. 1969; Hopfield 1982) 
is an attractive model for long-term as well as short-term memory. Espe- 
cially the Hopfield formulation (Hopfield 1982) provides for both levels 
a clear definition of data structure and mechanism of organization. The 
data structure of long-term memory has the form of synaptic weights 
for the connections between neurons, and memory traces are laid down 
with the help of Hebbian plasticity. On the short-term memory level the 
data structure has the form of stationary patterns of neural activity, and 
these patterns are organized and stabilized by the exchange of excitation 
and inhibition. Since in this formulation short-term memory states are 
dynamic attractor states, one speaks of attractor neural networks. Neu- 
rons are interpreted as elementary symbols, and attractor states acquire 
their symbolic meaning as an unstructured sum of individual symbolic 
contributions of active neurons. The great virtue of associative memory 
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is its ability to restore incomplete or corrupted input patterns, that is, its 
ability to generalize over Hamming distance (the number of bits missing 
or added). Let us just mention here, since it becomes relevant later, that 
associative memory can be formulated such that attractors correspond 
to oscillatory activity vectors instead of stationary ones (Li and Hopfield 
1989; Baird 1986; Freeman et al. 1988). 

Associative memory, taken as a model for functions of the brain, is 
severely limited in its applicability by a particular weakness - its low 
power of generalization. This is a direct consequence of the fact that 
associative memory treats memory traces essentially as monolithic enti- 
ties. An obvious and indispensable tool for generalization in any system 
must be the decomposition of complex patterns into functional compo- 
nents and their later use in new combinations. A visual scene is almost 
always composed of a number of subpatterns, corresponding to coher- 
ent objects that are very likely to reappear in different combinations in 
other scenes (or the same scene under a different perspective and thus 
in different spatial relations to each other). Associative memory is not 
equipped for this type of generalization, as has been pointed out before 
(von der Malsburg 1981, 1983, 1987). It treats any complex pattern as a 
synthetic whole, glues all pairs of features together, and recovers either 
the whole pattern or nothing of it. Two different arrangements of the 
same components cannot be recognized as related and have to be stored 
separately. There is no generalization from one scene to another, even 
if they are composed of the same objects. Since complex scenes never 
recur, a nervous system based on the associative memory mechanism 
alone possesses little ability to learn from experience. 

This situation is not specific to vision. Our auditory world is typified 
by complex sound fields that are composed of sound streams correspond- 
ing to independent sources. Take as an example the cocktail party phe- 
nomenon where we are exposed to several voices of people who talk at 
the same time. It would be useless to try to store and retrieve the combi- 
nations of sounds heard simultaneously from different speakers. Instead, 
it is necessary to separate the sound streams from each other and store 
and access them separately. Similar situations characterize other modali- 
ties and especially all higher levels of cognitive processing. The basis for 
the type of generalization discussed here is the specific and all-pervasive 
property of our world of being causally segmented into strongly cohesive 
chunks of structure that are associated with each other into more loose 
and varying combinations. 

There are two attitudes which an advocate of associative memory 
could take in response to this evident weakness. One is to see it as a 
component in a more complex system. The system has other mechanisms 
and subsystems to analyze and create complex scenes composed of rigid 
subpatterns that can individually be stored and retrieved in associative 
memory. The other attitude tries to build on the strengths of associative 
memory as a candidate cognitive architecture and tries to modify the 
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model such as to incorporate the ability to segment complex input pat- 
terns into subobjects and to compose synthetic scenes from stored objects. 
We subscribe to this second attitude in this paper. 

There are three issues that we have to address. The first concerns the 
type of information on the basis of which pattern segmentation can be 
performed; second, the data structure of associative memory and attrac- 
tor neural networks has to be modified by the introduction of variables 
that express syntactical' binding; and third, mechanisms have to be found 
to organize these variables into useful patterns. 

There are various potential sources of information relevant to segmen- 
tation. In highly structured sensory spaces, especially vision and audi- 
tion, there are general laws of perceptual grouping, based on "common 
fate" (same pattern of movement, same temporal history), continuity of 
perceptual quality (texture, depth, harmonic structure), spatial contiguity, 
and the like. These laws of grouping have been particularly developed 
in the Gestalt tradition. On the other end of a spectrum, segmentation 
of complex patterns can be performed by just finding subpatterns that 
have previously been stored in memory. Our paper here will be based 
on this memory-dominated type of segmentation. 

Regarding an appropriate data structure to encode syntactical binding, 
the old proposal of introducing more neurons (e.g., a grandmother-cell 
to express the binding of all features that make up a complex pattern) is 
not a solution (von der Malsburg 1987) and produces many problems of 
its own. It certainly is useful to have cells that encode high-level objects, 
but the existence of these cells just creates more binding problems, and 
their development is difficult and time-consuming. We work here on 
the assumption (von der Malsburg 1981, 1983, 1987; von der Malsburg 
and Schneider 1986; Gray et al. 1989; Eckhorn et al. 1988; Damasio 1989; 
Strong and Whitehead 1989; Schneider 1986) that syntactical binding is 
expressed by temporal correlations between neural signals. The scheme 
requires temporally structured neural signals. A set of neurons is syn- 
tactically linked by correlating their signals in time. Two neurons whose 
signals are not correlated or are even anticorrelated express thereby the 
fact that they are not syntactically bound. There are first experimental 
observations to support this idea (Gray et al. 1989; Eckhorn et al. 1988). 
It may be worth noting that in general the temporal correlations relevant 
here are spontaneously created within the network and correspondingly 
are not stimulus-locked. 

As to the issue how to organize the correlations necessary to express 
syntactical relationships, the natural mechanism for creating correlations 
and anticorrelations in attractor neural networks is the exchange of ex- 
citation and inhibition. A pair of neurons that is likely to be part of 
one segment is coupled with an excitatory link. Two neurons that do 

'We use the word syntactical structure in its original sense of arranging together, that 
is, grouping or binding together, and do not intend to refer to any specific grammatical 
or logical rule system. 
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not belong to the same segment inhibit each other. The neural dynam- 
ics will produce activity patterns that minimize contradictions between 
conflicting constraints. This capability of sensory segmentation has been 
demonstrated by a network that expresses general grouping information 
(von der Malsburg and Schneider 1986; Schneider 1986). 

The system we are proposing here is based on associative memory, 
and performs segmentation exclusively with the help of the memory- 
dominated mechanism. Our version of associative memory is formulated 
in a way to support attractor limit cycles (Li and Hopfield 1989; Baird 
1986; Freeman et al. 1988): If a stationary pattern is presented in the 
input that resembles one of the stored patterns, then the network settles 
after some transients into an oscillatory mode. Those neurons that have 
to be active in the pattern oscillate in phase with each other, whereas 
all other neurons are silent. In this mode of operation the network has 
all the traditional capabilities of associative memory, especially pattern 
completion. When a composite input is presented that consists of the 
superposition of a few patterns the network settles into an oscillatory 
mode such that time is divided into periods in which just a single stored 
state is active. Each period corresponds to one of the patterns contained 
in the input. Thus, the activity of the network expresses the separate 
recognition of the individual components of the input and represents 
those patterns in a way avoiding confusion. This latter capability was not 
present in previous formulations of associative memory. The necessary 
couplings between neurons to induce correlations and anticorrelations 
are precisely those created by Hebbian plasticity. 

Several types of temporal structure are conceivable as basis for this 
mode of syntactical binding. At one end of a spectrum there are regular 
oscillations, in which case states would be distinguished by different 
phase or frequency. At the other end of the spectrum there are chaotic 
activity patterns (Buhmann 1989). The type of activity we have chosen to 
simulate here is intermediate between those extremes, being composed 
of intermittent bursts of oscillations (see Fig. 21, a common phenomenon 
in the nervous system at all levels. 

2 Two Coupled Oscillators 

A single oscillator i, the building block of the proposed associative mem- 
ory, is modeled as a feedback loop between a group of excitatory neurons 
and a group of inhibitory neurons. The average activity 2, of excitatory 
group i and the activity yi of inhibitory group i evolve according to 

(2.2) 
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where r, and ry are the time constants of the excitatory and inhibitory 
components of the oscillator. An appropriate choice of r,, ry allows us 
to relate the oscillator time to a physiological time scale. Gz and Gy are 
sigmoid gain functions, which in our simulations have the form 

with thresholds 8, or 8, and gain parameters l / A z  and l/&. For the 
reaction of inhibitory groups on excitatory groups we have introduced 
the nonlinear function F(x)  = (1 - q)x+ qx2, (0 5 q 5 l), where q parame- 
terizes the degree of quadratic nonlinearity. This nonlinearity proved to 
be useful in making oscillatory behavior a more robust phenomenon in 
the network, so that in spite of changes in excitatory gain (with varying 
numbers of groups in a pattern) the qualitative character of the phase por- 
trait of the oscillators is invariant. H, in equation 2.3 describes delayed 
self-inhibition of strength a and decay constant p. This is important to 
generate intermittant bursting. The synaptic strengths of the oscillators’ 
feedback loop are T,,, T ,  s E { x ,  y}. Equations 2.1 and 2.2 can be inter- 
preted as a mean field approximation to a network of excitatory and in- 
hibitory logical neurons (Buhmann 1989). Notice that x,, y, are restricted 
to [0, rZ] and [O, ry], respectively. The parameters 2 and may be used 
to control the average values of x and y. In addition to the interaction 
between x, and y,, an excitatory unit x, receives time-dependent external 
input I,(t) from a sensory area or from other networks, and internal input 
S,(t) from other oscillators. 

Let us examine two oscillators of type 2.1-2.3, coupled by associative 
connections W12, W21 as shown schematically in Figure 1. The associative 
interaction is given by 

Sl(t) = W1222(t); S2(t) = W21x,(t) 

Two cases can be distinguished by the sign of the associative synapses. If 
both synapses are excitatory (“2 > 0, W21 > 0) the two oscillators try to 
oscillate in step, interrupted by short periods of silence due to delayed 
self-inhibition. A simulation of this case is shown in Figure 2a. The 
degree of synchronization can be quantified by measuring the correlation 

(21x2) - ( X d ( X 2 )  C(1,2) = 
AXIAX, 

between the two oscillators, Ax, being the variance of x,. For the sim- 
ulation shown in Figure 2a we measured C(1,2) = 0.99, which indicates 
almost complete phase locking. 

The second case, mutual inhibition between the oscillators (W12 < 
0, W21 < 0), is shown in Figure 2b. The two oscillators now avoid each 
other, which is reflected by C(1,2) = -0.57. 
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Inhibitory 

d Associative 

Figure 1: Diagram of two mutually connected oscillators. 

Alternatively, both oscillators could be continuously active but oscil- 
late out of phase, with 180" phase shift. That mode has been simulated 
successfully for the case of two oscillators and might be applied to seg- 
mentation of an object from its background; for more than two oscillators 
with mutual inhibition phase avoidance behavior turns out to be difficult 
to achieve. 

3 Segmentation in Associative Memory 

After this demonstration of principle we will now test the associative 
capabilities of a network of N oscillators connected by Hebbian rules. 
We store p sparsely coded, random N bit words 6'' = {.C$'}E, with pattern 
index v = 1,. . . , p .  The probability that a bit equals 1 is a, that is, P([,Y) = 
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aS([r - 1) + (1 - a)S([,”) with typically a < 0.2. The synapses are chosen 
according to the Hebbian rule 

With connectivity 3.1, oscillator i receives input Si(t) = Ekfi  Wikxk(t) from 
other oscillators. 

In the following simulation, 50 oscillators and 8 patterns were stored 
in the memory. For simplicity we have chosen patterns of equal size 

b 

Figure 2: (a) Simulated output pattern of two mutually excitatory oscillators. 
The parameter values for the two oscillators are the same, 7, = 0.9, 7, = 1.0, 

11 = I, = 0.2, ct = 0.2, /3 = 0.14, 5 = y = 0.2, W12 = W21 = 2.5. Initial values: 
z1(0) = 0.0, z2(0) = 0.2, y1(0) = y2(0) = 0.0. The equations have been integrated 
with the Euler method, At = 0.01,14,000 integration steps. (b) Simulated output 
pattern of two mutually inhibitory oscillators. All parameters are the same as 
in (a), except that “12 = “21 = -0.84, o = 0.1, p = 0.26. 

T,, = 1.0, T,, = 1.9, T~~ = 1.3, T~~ = 1.2, 77 = 0.4, A, = A, = 0.05, oz = 0.4, e, = 0.6, 



Pattern Segmentation in Associative Memory 101 

(8 active units). The first three patterns, which will be presented to the 
network in the following simulation, have the form 

t’ = (l,l, 1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,. . . ,O)  
52 = (0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0.0,1,0,. . . , O )  
6 3  = (1 ,0 ,0 ,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0, .  . . , O )  (3.2) 

Notice the 25% mutual overlap among these 3 patterns and bits [y9 = 1 
for patterns u = 1,2,3.  

With this choice of stored patterns we have tested pattern recall and 
pattern completion after presentation of just one incomplete pattern, the 
fundamental capability of associative memory. The network restored the 
information missing from the fragment within one or two cycles. The 
same behavior had been demonstrated in (Freeman et a2. 1988). 

A more intriguing dynamic behavior is shown by the network if we 
present all three patterns [I, [’, E3 or parts of them simultaneously. In 
all simulations external input was time-independent but similar results 
can be expected for time-dependent input as used in Li and Hopfield 
(1989). The result of a simulation is shown in Figure 3 where the input 
is a superposition of patterns E l ,  6’, t3 with one bit missing in each 
pattern (see caption of Fig. 3). In this figure only the first 19 oscillators 
are monitored; the others stay silent due to lack of input and mutual 
inhibition among oscillators representing different patterns. All three 
patterns are recognized, completed, and recalled by the network. 

In addition to the capabilities of conventional associative memory the 
network is able to segment patterns in time. The assembly of oscillators 
representing a single input pattern is oscillating in a phase-locked way for 
several cycles. This period is followed by a state of very low activity, dur- 
ing which another assembly takes turn to oscillate. In Figure 4 we have 
plotted the correlations between the first 19 oscillators. The oscillators 
in one pattern are highly correlated, that is coactive and phase-locked, 
whereas oscillators representing different patterns are anticorrelated. Os- 
cillators 1, 7, and 13, which belong to two patterns each, stay on for two 
periods. Oscillator 19, which belongs to all three active patterns, stays on 
all the time. According to a number of simulation experiments, results 
are rather stable with respect to variation of parameters. 

Switching between one pattern and another can be produced either by 
noise, or by delayed self-inhibition (the case shown here), or by a modu- 
lation of external input. A mixture of all three is likely to be biologically 
relevant. The case shown here is dominated by delayed self-inhibition 
and has a small admixture of noise. The noise-dominated case, which 
we have also simulated, has an irregular succession of states and takes 
longer to give each input state a chance. Delayed self-inhibition might 
also be used in a nonoscillatory associative memory to generate switch- 
ing between several input patterns. Our simulations, however, indicate 
that limit cycles facilitate transitions and make them more reliable. 
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Figure 3: Simulation of an associative memory of 50 oscillators. Eight patterns 
have been stored in the memory and three of them, ,$I, t*, t3 (3.2) are presented 
in this simulation simultaneously with one bit missing in each pattern. Only 
the output of the first 19 oscillators is shown. The others stay silent due to 
lack of input. The vertical dashed lines identify three consecutive time inter- 
vals with exactly one pattern active in each interval. From the result we see 
that at any time instant only one pattern is dominant while in a long run, all 
patterns have an equal chance to be recalled due to switching among the pat- 
terns. The parameter values differing from Figure 2 are Tyy = 1.0, a = 0.17, 
p = 0.1. We added uncorrelated white noise of amplitude 0.003 to the input 
to the excitatory groups. Initial value: x = 0.2(1,. . . , l), y = (0,. . . ,O). Input: 
I = 0.2 ~1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,. . .,Oh 
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Figure 4: Correlation matrix between the first 19 oscillators (cf. Fig. 3). Filled 
and open circles stand for positive and negative correlations, respectively. The 
diameter of each circle is proportional to the absolute value of the correlation. 

For conceptual reasons, only a limited number of states can be repre- 
sented in response to a static input. A superposition of too many (more 
than perhaps 10) input states leads to ambiguity and the system responds 
with an irregular oscillation pattern. The exact number of entities that 
can be represented simultaneously depends on details of implementa- 
tion, but a reasonable estimate seems to be the seven plus or minus two, 
often cited in the psychophysical literature as the number of objects that 
can be held in the human attention span. 
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4 Discussion 

The point of this paper is the demonstration of a concept that allows us 
to compute and represent syntactical structure in a version of associative 
memory. Whereas in the attractor neural network view a valid state of 
short-term memory is a static activity distribution, we argue for a data 
structure based on the history of fluctuating neural signals observed over 
a brief time span (the time span often called "psychological moment") 
(Poppel and Logothetis 1986). There is ample evidence for the existence 
of temporal signal structure in the brain on the relevant time scale (10- 
50 msec). Collective oscillations are of special relevance for our study 
here. They have been observed as local field potentials in several cortices 
(Gray et al. 1989; Eckhorn et al. 1988; Freeman 1978). The way we have 
modeled temporal signal structure, as bursts of collective oscillations, 
is just one possibility of many. Among the alternatives are continuous 
oscillations, which differ in phase or frequency between substates, and 
stochastic signal structure. 

Is the model biologically relevant? Several reasons speak for its ap- 
plication to sensory segmentation in olfaction. A major difficulty in ap- 
plying associative memory, whether in our version or the standard one, 
is its inability to deal with perceptual invariances (e.g., visual position 
invariance). This is due to the fact that the natural topology of asso- 
ciative memory is the Hamming distance, and not any structurally in- 
variant relationship. In olfaction, Hamming distance seems to be the 
natural topology, and for this reason associative memory has been ap- 
plied to this modality before (Li and Hopfield 1989; Baird 1986; Free- 
man et al. 1988; Haberly and Bower 1989). Furthermore, in the sim- 
ple model for segmentation we have presented here, this ability relies 
completely on previous knowledge of possible input patterns. In most 
sensory modalities general structure of the perceptual space plays an ad- 
ditional important role for segmentation, except in olfaction, as far as we 
know. Finally, due to a tradition probably started by Walter Freeman, 
temporal signal structure has been well studied experimentally (Free- 
man 1978; Haberly and Bower 1989), and has been modeled with the 
help of nonlinear differential equations (Baird 1986; Freeman et al. 1988; 
Haberly and Bower 1989). There are also solid psychophysical data on 
pattern segmentation in olfaction (Laing et al. 1984; Laing and Frances 
1989). It is widely recognized that any new mixture of odors is per- 
ceived as a unit; but if components of a complex (approximately bal- 
anced) odor mixture are known in advance, they can be discriminated, 
in agreement with the model presented here. When one of the two odors 
dominates the other in a binary mixture, only the stronger of the two 
is perceived (Laing et al. 1984), a behavior we also observed in our 
model. 

How can associative memory, of the conventional kind or ours, be 
identified in the anatomy (Shepherd 1979; Luskin and Price 1983) of the 
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olfactory system of mammals? In piriform cortex, pyramidal cells on the 
one hand and inhibitory interneurons on the other would be natural can- 
didates for forming our excitatory and inhibitory groups of cells. They 
would be coupled by associative fibers within piriform cortex. Signals 
in stimulated olfactory cortex are oscillatory in nature (in a frequency 
range of 40-60 Hz) (Freeman 1978) and therefore lend themselves to this 
interpretation. On the other hand, also the olfactory bulb has appro- 
priately connected populations of excitatory (mitral cells) and inhibitory 
(granule cells) neurons, which also undergo oscillations in the same fre- 
quency range and possibly in phase with cortical oscillations. The two 
populations are coupled by the lateral and medial olfactory tract in a 
diffuse, nontopographically ordered way. Thus a more involved imple- 
mentation of associative memory in the coupled olfactory bulb-piriform 
cortex system is also conceivable. 

Our model makes the following theoretical prediction. If the animal 
is stimulated with a mixture of a few odors known to the animal, then 
it should be possible to decompose local field potentials from piriform 
cortex into several coherent components with zero or negative mutual 
correlation. 
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