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An Oscillatory Correlation Model of Object-based Attention

Marcos G. Quiles, DeLiang Wang, Liang Zhao, Roseli A. F. Romero, and De-Shuang Huang

Abstract—Attention is a critical mechanism for visual scene
analysis. By means of attention, it is possible to break down the
analysis of a complex scene to the analysis of its parts through a
selection process. Empirical studies demonstrate that attentional
selection is conducted on visual objects as a whole. We present
a neurocomputational model of object-based selection in the
framework of oscillatory correlation. By segmenting an input
scene and integrating the segments with their conspicuity
obtained from a saliency map, the model selects salient objects
rather than salient locations. The proposed system is composed
of three modules: a saliency map providing saliency values of
image locations, image segmentation for breaking the input
scene into a set of objects, and object selection which allows
one of the objects of the scene to be selected at a time. This
object selection system has been applied to real images and the
simulation results show its effectiveness.

I. INTRODUCTION

The perceptual mechanism of selecting a part of the visual
input for conscious analysis is called selective visual atten-
tion, and it is a mechanism that is fundamentally important
for the survival of an organism [3], [25]. Visual attention is
thought to involve two aspects [25]. The first one is called
bottom-up (or stimulus-driven) attention that is based on
analyzing stimulus characteristics of the input scene. The
second aspect is top-down control (or goal-driven attention)
that is influenced by the intention of the viewer, like looking
for a specific thing.

Attention can be directed to spatial locations, visual fea-
tures, or objects (for a review see [4]). Recent behavioral and
neurophysiological evidence establishes that the selection of
objects plays a central role in primate vision [13], [14], [15],
[22]. It is believed that a preattentive process, in the form of
perceptual organization, is performed unconsciously by the
brain. This process is responsible for segmenting the visual
scene into a set of objects which then act as wholes in the
competition for attentional selection [3]. Perceptual organi-
zation has been extensively studied in Gestalt psychology
where it is emphasized that the visual world is perceived
as an agglomeration of well structured objects, not as an
unorganized collection of pixels.

Due to the competitive nature of visual selection, most
of the neural models are based on winner-take-all (WTA)
networks [6], [7], [10]. Through neural competition, a WTA
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network selects one neuron, the winner, in response to a given
input [1]. In this way, a pixel or location, not an object, of the
scene is selected. These visual selection models correspond
to location-based theories of visual attention, but not object-
based theories.

In order to develop a neural model of visual selection
that is object-based, one has to address how to group the
elements, or features, of a visual scene into a set of coherent
objects. The problem of how sensory elements of a scene are
combined together to form perceptual objects in the brain
is known as the binding problem [18]. Von der Malsburg
proposed temporal correlation theory to address the binding
problem [18]. The theory asserts that objects are represented
by the temporal correlation of the firing activities of spatially
distributed neurons coding different object features. A natural
way of encoding temporal correlation is using synchroniza-
tion of neural oscillators [17], [19], [21]. This form of tempo-
ral correlation is called oscillatory correlation [17] whereby
oscillators that encode different features of the same object
are synchronized and those that encode different objects are
desynchronized. The oscillatory correlation theory has been
applied to various tasks of scene analysis (see [21] for an
extensive review).

Although oscillation-based models for visual attention
have been studied for years [12], the first attempt to perform
object selection using oscillatory correlation was made by
Wang [20]. This study achieves size-based object selection
based on LEGION (Locally Excitatory Globally Inhibitory
Oscillator Network) and a slow inhibition mechanism. How-
ever, the model considers just object size in competition.
Size-based selection was also considered by Kazanovich and
Borisyuk [9] where the frequency and amplitude of oscilla-
tors are used to perform selection. A different object-based
model for visual attention was proposed in [16]. Although
this model performs object-based selection, it assumes that
perceptual organization has already been done. An oscillatory
correlation model has also been developed for auditory
selective attention [24].

Here we propose an object-based visual selection model
with three major components. First, a saliency map is em-
ployed to calculate point-wise conspicuity over the input
scene. This saliency map is intended to simulate feature
and location based aspects of visual attention. Second, the
LEGION network is used to segment the input image, and
this network is intended to perform the task of perceptual
organization. Third, an object-based selection network is
proposed. This selection network chooses the most salient
object using an object-saliency map created by integrating
the results from the saliency map and LEGION segmentation.
Moreover, our selection network is able to shift the focus of
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Fig. 1. Flowchart of a saliency map [7].

attention from one object to the next.
This paper is organized as follows. In Section II, an

overview of the saliency map and LEGION segmentation
is presented. Section III describes the selection layer of
the system. Evaluation results are presented in Section IV.
Finally, Section V offers a few concluding remarks.

II. BACKGROUND

A. Saliency Map

To compute the saliency we use the saliency map proposed
in [7], [10]. This saliency map mimics the properties of early
vision in primates and is based on the idea that a unique map
is used to control the deployment of attention [6], [10].

The saliency map is an explicit two-dimensional map
responsible for encoding the saliency over all points of the
visual scene. It focuses on the role of local feature contrast
in guiding attention [6], [7]. Despite its simple architecture
based on feedforward feature-extraction mechanisms, this
model has proved to have robust performance when dealing
with complex scenes and it achieves some qualitative results
matching human visual search [6].

Generally speaking, the saliency map is produced in the
following way. First, a set of maps representing primary
features, such as color and orientation, are extracted from
the input scene. After that, in order to model the center-
surround receptive fields, operations are performed over
different spatial scales of those maps. This process followed
by a normalization operator results in a new set of maps
called feature maps. Next, feature maps are combined into
a set of conspicuity maps. Finally, a linear combination of
conspicuity maps results in the saliency map. A flowchart of
this process is shown in Figure 1 and a formal description
of the process can be found in [7].

The saliency map Sm is used to compute the object-
saliency map described in Section III.

B. Image Segmentation

The scene segmentation model [23] is an extension of
the LEGION model [17]. The basic unit of LEGION is a
relaxation oscillator defined as a feedback loop between an
excitatory variable xi and an inhibitory variable yi [17]:

ẋi = 3xi − x3
i + 2− yi + Ii + Si + ρ (1a)

ẏi = ε(α(1 + tanh(xi/β))− yi) (1b)

where Ii represents the external stimulation, Si the input
from neighboring oscillators in the network, and ρ denotes
the amplitude of Gaussian noise. Parameter ε is a small
positive number.
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Fig. 2. Dynamics of a single relaxation oscillator. (a) Behavior of an
enabled oscillator. A limit cycle trajectory is represented by a bold curve
and the arrows indicate the motion direction. (b) Behavior of an excitable
oscillator. In this case, a stable fixed point is observed indicated by the dot.

Figure 2 shows the nullclines and the trajectories of a
single oscillator defined in Eq. (1), where the x-nullcline is
a cubic function and the y-nullcline is a sigmoid function. If
the total stimulation received by the oscillator, Ii+Si+ρ > 0,
the nullclines intersect at just one point at the middle branch
of the cubic. In this case, the oscillator is said to be enabled
and a stable cycle limit is observed (see Fig. 2(a)). The
periodic orbit alternates between an active phase and a
silent phase, which correspond to high and low x values,
respectively. The transition between the two phases occurs
rapidly in comparison with the motion within each phase,
thus referred to as jumping. The parameter α controls how
much time the oscillator spends in these two phases. When
the total input Ii +Si + ρ < 0, the two nullclines of Eq. (1)
intersect at a stable fixed point on the left branch of the cubic
(see Fig. 2(b)). In this case, no oscillation is observed. As the
oscillator can be induced to oscillate by external stimulation,
such a state is called excitable. The parameter β controls the
steepness of the sigmoid which is normally set to a small
value in order to make the sigmoid approach a step function
[17].

To perform image segmentation on real images, a lateral
potential term is introduced to distinguish between major
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regions and noisy fragments [23]. This mechanism can be
explained as follows. If oscillator i lies in the center of a
homogeneous image region, it is able to receive a large input
from its neighbors; in this case it is defined as a leader. On
the other hand, if it corresponds to an isolated fragment of the
image, it does not receive a large input from its neighborhood
and hence cannot become a leader. Based on this idea, only
blocks which have at least one leader are allowed to oscillate.

The connection term Si of Eq. (1a) is defined as follows:

Si =
∑

k∈N(i)

WikH(xk − θx)−WzH(z − θz) (2)

where Wik defines the connection weight from oscillator k to
i and N(i) represents a set of oscillators that comprises the
neighborhood of i [23]. H represents the Heaviside function
defined as H(v) = 1 if v ≥ 0 and H(v) = 0 otherwise. θx

and θz are thresholds.
Wz in Eq. (2) defines the inhibition weight associated with

the global inhibitor z. The dynamics of z is defined as:

ż = φ

(∑
k

H(xk − θx)− z
)

(3)

where φ is a parameter that controls how fast the global
inhibitor reacts to the stimulation received from the oscilla-
tors. Note that z approaches the number of oscillators in the
active phase, and will be used to represent the size of each
synchronized oscillator block (segment).

Based on the LEGION dynamics described above, Wang
and Terman [23] developed a computer algorithm that fol-
lows the main aspects observed on the numerical simula-
tions of the Equations (1)-(3). Detailed description of this
algorithm can be found in [23].

III. MODEL DESCRIPTION

Figure 3 shows a flowchart of our model. First, an input
image feeds the image segmentation and saliency map mod-
ules. Second, the segmentation result and the saliency map
are combined to build an object-saliency map that feeds the
object selection module. Third, the object selection module
selects the most salient object and suppresses all the others.
Finally, the Inhibition of Return (IoR) mechanism is included
in the object selection module that inhibits the previously
selected object in order to allow the next most salient object
to be selected.

The following sections describe how the object-saliency
map is created and how object selection works.

A. Object-Saliency Map

The object-saliency map, S, is responsible for providing
the level of saliency of each object in the input scene. This
map differs from Sm which represents the saliency of each
pixel. For each segment produced by the segmentation layer,
its average saliency is calculated from all the corresponding
points in Sm:

Fig. 3. Diagram of the proposed object selection model, which is composed
a saliency map, a LEGION segmentation layer, and an object selection layer
that includes an inhibition-of-return (IoR) mechanism. Arrows indicate the
computational flow of the system. The images shown below the selection
layer illustrates a sequence of the objects selected.

S(i) =

∑
j∈O(i) S

m(j)

|O(i)|
5

√
|O(i)|
|OM | (4)

where O(i) is the set of all pixels grouped with pixel i in the
same segment; Sm(j) is value of the saliency map at pixel
j; |O(i)| is the size of O(i); |OM | is the size of the largest
segment in the input image; and the 5th-root function is used
to moderate the saliency of relatively small segments.

As described above, to calculate the object-saliency map S
we utilize the results generated by the previous layers. Thus,
the segmentation process must be concluded before selection
can happen. An interesting property of the segmentation
algorithm based on LEGION is that the process is completed
when every leader has jumped up once [23]. In this way,
we can generate the object-saliency map and perform visual
selection after the segmentation process is completed.

B. Object Selection

The object selection network is an extension of the LE-
GION model following the ideas developed in [20] where a
fast and a slow inhibitor are responsible for desynchronizing
the objects and selecting the one of them, respectively.

This network follows the dynamics described in Section II-
B. The main differences between our network for object se-
lection and LEGION for image segmentation are the presence
of the slow inhibitor, the introduction of the IoR mechanisms,
and how the external stimulation is defined.
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Here, each oscillator is connected to its eight nearest
neighbors as follows. If two neighboring oscillators have
their corresponding oscillators in the segmentation layer
synchronized, they are connected. On the other hand, if the
corresponding oscillators in the segmentation layer do not
belong the same object (i.e. desynchronized), the connection
between the two oscillators in the object selection layer is
set to zero. Thus, the objects formed in the LEGION layer
are directly transported to the object selection layer.

The external stimulation Ii is defined as follows:

Ii = ViH(S(i)− Czs)H(ri − θz) (5)

where Vi is set to a high value if the corresponding oscillator
i in the segmentation layer is enabled. Otherwise, Vi is set
to a low value. In this way, oscillators in the object selection
layer corresponding to a segment in LEGION assume high
values of V , whereas oscillators representing noisy fragments
(the background) have a low V value. C is a parameter that
controls the number of objects that can be selected at a time
[20]. The variable ri models the IoR component of each
oscillator described by the following equation:

ṙi = −ωriH(xi − θx) (6)

Initially, for each oscillator i, ri is set to 1. Every time an
oscillator jumps to the active phase, its ri value is reduced
following Eq. (6). After a number of cycles controlled by
parameter ω, ri approaches zero. Thus, the second Heaviside
function of Eq. (5) returns zero and the oscillator is inhibited.
Due to the presence of the IoR, the selection network
is allowed to select the next most salient object, which
resembles attentional shifts in visual perception [6].

The dynamics of the slow inhibitor of Eq. (5) is defined
as:

żs = ψ

[∑
k

S(k)H(xk − θx)
|O(k)| − zs

]+

− µεzs (7)

where the function [v]+ = v if v ≥ 0 and 0 otherwise. The
parameters ψ and µ are on the order of 1. The slow inhibitor
is characterized by a fast rise and a slow decay owing to
the small value of the relaxation parameter ε. The selection
process is produced by the Heaviside function and the slow
inhibitor which allows to become active just the oscillators
with S(i) ≥ Czs. Thus, by setting a proper value of C as
defined in [20], only the object with the highest value of S(i)
is allowed to oscillate, i.e. to be selected.

Once we have the saliency of all the objects, we can
use these values to determine which object oscillates so as
to avoid the time-consuming competition for selection. To
achieve this behavior, the initial value of yi (Eq. 1b) is set
according to its object-saliency value in the following way:

yi = 2α(1− S(i)) + Vi (8)

The overall behavior of our model can be understood
as follows. The saliency map calculates the saliency of all

(a)

(b)

Fig. 4. Illustration of the object selection process. The selection network is
integrated using the fourth-order Runge-Kutta method. (a) Object-saliency
map showing three objects: a square (1), a left object (2) and a lower-
right object (3). (b) Activity of each oscillator block (indicated by an object
number) and its corresponding IoR, plus the activity traces of the fast and
the slow inhibitor.

pixels. In parallel, the LEGION layer segregates the input
image into a set of segments. After that, the object-saliency
map is generated based on Eq. (4). This map feeds the
object selection layer. In Eq. (5), the first Heaviside plays the
role of object selection and the second the IoR. If the first
Heaviside returns 0, i.e. the object saliency value that feeds
the oscillator does not exceed the level of the slow inhibitor,
the object is inhibited. On the other hand, if the object
saliency value that feeds a block of oscillators exceeds slow
inhibition, the object represented by them is selected. At the
same time, the slow inhibitor assumes a new value through
Eq. (7) which represents the object saliency of the currently
active segment. As a result, other objects with smaller object
saliency values are prevented from being selected.

Once a block is oscillating, the IoR mechanism takes effect
and each oscillator i within that block has its ri reduced by
Eq. (6). After a few cycles, ri approaches zero. Thus, the
second Heaviside of Eq. (5) returns 0, which represents the
inhibition of oscillator i and consequently the inhibition of
the whole segment. Following the inhibition of this object,
the slow inhibitor has its value decreased by Eq. (7) and the
next object is selected. This behavior is shown in Fig. 4.

IV. SIMULATION RESULTS

Before presenting simulation results, we first describe the
parameters used in the modules. In the saliency map module
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Fig. 5. Object selection result for a gray level image. (a) Input image which
is an aerial image with 160 × 160 pixels. (b) Saliency map. (c) Result of
LEGION segmentation, where each segment is represented by a distinct
color. (d) Object-saliency map. (e) First object selected. (f) Second object
selected.

we apply the same parameter values used in [7]. Image seg-
mentation is performed by the algorithm presented in [23].
The coupling strength Wij between two neighbor oscillators
is set according to their similarity using the following rule.
For gray level images,

Wij = IM/(1 + |Ii − Ij |) (9)

For color images,

Wij = IM/

⎛
⎝1 +

∑
h∈{r,g,b}

|hi − hj |
⎞
⎠ (10)

where IM is the maximum value of the channels I , r, g, and
b. In our simulations, this value is set to 255. Ii is the gray
level of pixel i. hi represents the color channel (r, g, and b)
of a color pixel i.

The object selection network presented in Section III-
B is integrated by using the fast numerical method of

singular limit which allows for simulating large networks of
relaxation oscillators [11]. The following parameter values
are used for integrating the selection network by the singular
limit method: α = 6.5, Wz = 0.7, and µ = 0.125. All
the other parameters are not necessary when solving the
equations using this method. C = 1.65 is used for all the
experiments.

Figure 5(a) shows the first input figure. Figure 5(b)
presents the saliency map from Fig. 5(a) where brighter pix-
els indicate higher saliency points. Here, by using Wz = 20
the LEGION network produces 17 segments as shown in Fig
5(c). Based on the results from the saliency map (Fig. 5(b))
and LEGION (Fig. 5(c)), the object-saliency map is shown
in Figure 5(d). In this figure, a brighter object indicates a
higher saliency one. This map feeds the object selection
network which first chooses the most salient object shown
in Figure 5(e), representing a lake in the central part of the
scene. After that, due to the IoR mechanism described in
Section III-B, the oscillators representing the first selected
object are inhibited allowing the system to select the second
most salient object which is shown in Fig. 5(f). In all the
simulations presented in this paper, only the first and the
second selected objects are shown to illustrate the selection
process.

Next, we present results on color images in Figures 6 and
7. In Figure 6(a), due to the high contrast of the beetle with
its background composed of mostly yellow and green things,
the beetle seems to be the first object to pop out from the
scene for a human observer. This percept agrees with the
result from our object-saliency map in Fig 6(b), where the
segment corresponding to the beetle is the brightest. As we
can see in Fig. 6(c), the first object to be selected is indeed
the beetle. Figure 7 presents a simulation of a scene where
the most salient object appears to a boat to a human observer.
Again, due to its high contrast with background objects, the
boat is selected by our system as the first object (see Fig.
7(c)).

Other simulations with gray and color images have been
conducted, and results with similar quality have been ob-
tained. In these simulations, the objects selected by our
system appear to match perceptual observations.

V. CONCLUDING REMARKS

Object based attention has received empirical support [13],
[14], [15], [22]. In this paper we have presented an object
selection model based on oscillatory correlation theory. This
model integrates several modules: A saliency map, which
calculates the saliency values of all the locations of the input
scene, a LEGION network for segmenting the scene into a
set of segments or objects, and an object selection network
for selecting the most salient object of the scene. Modeling
visual attention with an oscillator network is motivated by
physiological studies suggesting that synchronous activity
plays a fundamental role in solving the binding problem
and visual attention [5], [8], [18]. In contrast to previous
computational models of location-based visual attention, our
model, due to the use of an image segmentation layer, is able
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(c) (d)
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Fig. 6. Object selection result for a color image. (a) Input image with
351 × 256 pixels. (b) Saliency map. (c) Result of LEGION segmentation,
where each segment is represented by a distinct color. (d) Object-saliency
map. (e) First object selected. (f) Second object selected.

to deal with objects directly. By integrating the saliency map,
the segmentation layer, and the IoR mechanism, our selection
network can select a set of objects sequentially according to
their saliency.

Our model has several limitations that need to be addressed
in future work. The proposed system only addresses bottom-
up aspects of attentional selection, and top-down guidance
of attention is not modeled. Incorporation of other visual
features, such as motion and object contour, among others,
could further enhance the performance of the system. Finally,
it should also be stated that even though the architecture of
our model is motivated by experimental studies of visual
attention, our model does not simulate psychophysical data
in a quantitative way. Neurocomputational models have been
developed to simulate perceptual data of visual attention (see
[2] among others).
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Fig. 7. Object selection result for a color image. (a) Input image with
385 × 256 pixels. (b) Saliency map. (c) Result of LEGION segmentation,
where each segment is represented by a distinct color. (d) Object-saliency
map. (e) First object selected. (f) Second object selected.
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