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Processing noisy signals using the ideal binary mask improves automatic speech recognition (ASR)

performance. This paper presents the first study that investigates the role of binary mask patterns in

ASR under various noises, signal-to-noise ratios (SNRs), and vocabulary sizes. Binary masks are

computed either by comparing the SNR within a time-frequency unit of a mixture signal with a

local criterion (LC), or by comparing the local target energy with the long-term average spectral

energy of speech. ASR results show that (1) akin to human speech recognition, binary masking

significantly improves ASR performance even when the SNR is as low as �60 dB; (2) the ASR per-

formance profiles are qualitatively similar to those obtained in human intelligibility experiments;

(3) the difference between the LC and mixture SNR is more correlated to the recognition accuracy

than LC; (4) LC at which the performance peaks is lower than 0 dB, which is the threshold that

maximizes the SNR gain of processed signals. This broad agreement with human performance is

rather surprising. The results also indicate that maximizing the SNR gain is probably not an

appropriate goal for improving either human or machine recognition of noisy speech.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4798661]
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I. INTRODUCTION

Humans are adept at segregating and recognizing speech

in adverse conditions. Although the underlying mechanisms

are not fully understood, the auditory scene analysis (ASA)

account is the dominant theory (Bregman, 1990). According

to this account, listeners perform segregation in a two-stage

process. In the first stage, the acoustic input is analyzed to

form time-frequency (T-F) segments (Bregman, 1990; Wang

and Brown, 2006). The segments are grouped in the second

stage using primitive grouping cues, like periodicity, com-

mon onset/offset, etc., and top-down schemas.

Computational auditory scene analysis (CASA) approaches

speech separation based on ASA principles (Wang and

Brown, 2006).

A main computational goal of CASA is the ideal binary

mask (IBM), which was originally proposed on the basis of

the auditory masking phenomenon (Wang, 2005). The IBM

is a binary matrix defined in the T-F domain. A value of 1

(corresponding to an unmasked T-F unit) means that the cor-

responding T-F unit is dominated by the target, whereas a 0

(masked T-F unit) means that it is dominated by the masker.

Formally, the IBM is defined as

IBMðm; cÞ ¼ 1 if SNRðm; cÞ > LC

0 otherwise:

�
(1)

Here, m indexes time, c indexes frequency, SNR(m,c)

denotes the signal-to-noise ratio of the corresponding unit,

and LC is the local criterion or the SNR threshold. It is easy

to see that by varying the LC, one can alter the number of

unmasked units. An alternative definition for binary masks

has been suggested by comparing the target energy with the

long-term average spectrum of speech. Such masks are

called target binary masks (TBMs), as they depend only on

the target signal and not on the underlying noise in a mixture

(Anzalone et al., 2006; Kjems et al., 2009). Mathematically,

TBMs are defined similar to Eq. (1), by replacing the local

noise energy with the long-term average spectral energy of

speech while calculating SNR(m,c). Similar to the IBM, the

density of 1s in the TBM can be modified by varying the LC.

A number of studies have been conducted to investigate

the effect of various factors on the intelligibility of IBM

masked signals (Brungart et al., 2006; Anzalone et al., 2006;

Li and Loizou, 2008; Wang et al., 2009; Cao et al., 2011). It

is clear from the results that IBM masking substantially

improves intelligibility for both normal hearing (Brungart

et al., 2006; Anzalone et al., 2006; Li and Loizou, 2008;

Wang et al., 2009; Cao et al., 2011) and hearing impaired

listeners (Anzalone et al., 2006; Wang et al., 2009). Other

interesting observations have also been made in these experi-

ments. Anzalone et al. (2006) use masks that are similar to

the TBMs, defined using a threshold chosen so as to retain a

predetermined percentage of target energy, and show that

such masks improve intelligibility. Brungart et al. (2006) use

IBMs to study the effect of binary masking in the presence

of competing talkers, and observe a plateau region of nearly

perfect intelligibility when the LC is set between �12 and

0 dB. The results in Brungart et al. (2006) and Wang et al.
(2009) suggest that an LC of �6 dB is a better choice if the

goal is to improve intelligibility of IBM processed noisy sig-

nals, even though the IBM defined using an LC of 0 dB is

the optimal binary mask in terms of the SNR gain (Li and
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Wang, 2009). Li and Loizou (2008) observe a wider per-

formance plateau ranging from �20 to 5 dB using IBMs

defined in the discrete Fourier transform (DFT) domain

which is linear and has a finer resolution in the high-

frequency range. More recently, Roman and Woodruff

(2011) show that ideal binary masking can improve intelligi-

bility in both noisy and reverberant conditions.

The current work is mainly motivated by two speech

intelligibility studies reported in Wang et al. (2008) and

Kjems et al. (2009). Wang et al. (2008) show that noise sig-

nals after IBM masking can produce intelligible speech. This

indicates that the binary pattern of an IBM carries adequate

information for human speech recognition. Kjems et al.
(2009) extend this work to study the role of mask pattern in

speech intelligibility in varying noise and SNR conditions.

They used both IBMs and TBMs in their study. It has been

noted that the IBM (or the TBM) is invariant to the co-

varying of SNR and LC (Brungart et al., 2006). In other

words, if the SNR and the LC are varied by the same

amount, the IBM remains the same. Therefore, Kjems et al.
(2009) introduced the term relative criterion (RC), defined

as the difference between LC and SNR. The pattern of the

IBM remains unchanged for a given RC, irrespective of how

the SNR or the LC changes. The results in Kjems et al.
(2009) show that even though the mixture SNR, mask type

(IBM vs TBM), and the masker type play significant roles

when it comes to the intelligibility of binary masked signals,

the scores align well when viewed as a function of RC. For

example, peak intelligibility scores at any given condition

are typically obtained for similar values of RC, regardless of

the remaining variables. The two studies strongly suggest

that it is the pattern of the binary mask that is important as

far as intelligibility is concerned. The goal of the current

work is to examine whether similar trends exist for auto-

matic speech recognition (ASR) in noise.

The concept of oracle masks has been used in ASR

mainly in the missing data framework (Cooke et al., 2001;

Raj et al., 2004). Early systems used IBM-like masks either

to marginalize the probability of the missing (masked) fea-

tures during the scoring stage of a hidden Markov model

(HMM) based recognizer (Cooke et al., 2001; Ma et al.,
2013), or to reconstruct them using prior distributions of

speech and the available information in the reliable

(unmasked) features (Raj et al., 2004; Van Segbroeck and

Van Hamme, 2011; Gonzalez et al., 2013). ASR systems

that simulate human performance have also been proposed

based on similar ideas (Cooke, 2006). More recently, it has

been shown that binary masked signals can be directly used

by ASR systems, i.e., without marginalization or reconstruc-

tion steps (Hartmann and Fosler-Lussier, 2011; Hartmann

et al., 2011; Hartmann, 2012). In these studies, the IBM is

used as a binary gain function to enhance the noisy signal

before performing feature extraction. With the ASR features

appropriately normalized, this direct masking approach

results in a performance similar to, and in some cases better

than, marginalization and reconstruction based missing data

methods. This suggests that, similar to human speech recog-

nition, binary masking alone can significantly boost ASR

performance. It is of interest, therefore, to study whether the

general trends in intelligibility of binary masked signals also

hold for automatic speech recognition.

A. Aims of the ASR experiments

The main aim of this work is to understand how a mask

pattern affects ASR performance. Inspired by Kjems et al.
(2009), the focus will be on RC rather than LC. The first

objective of our experiments is to study if there is a range of

RC values for which significant improvements in ASR can

be obtained compared to directly recognizing noisy speech.

Several related questions are of interest. Does this range con-

tain the commonly used LC value of 0 dB that maximizes

the SNR gain? Does this range depend on variables like mix-

ture SNR, noise condition, etc.? Also of interest is under-

standing whether the peak ASR performance depends on the

SNR and the underlying noise condition, or it only depends

on a suitably chosen RC. The answers to these questions will
help set the appropriate objective of mask estimation algo-
rithms designed for robust ASR.

The second aim of the experiments is to understand how

the mask definition affects performance. TBMs have been

shown to be quite useful for human speech recognition. Are
TBMs also useful in ASR? If they perform reasonably well,

then it will be a useful result for a certain class of speech

enhancement methods that estimate the TBM better than the

IBM.

Finally, it will be of interest to understand how the vo-

cabulary size affects ASR performance. Clearly, human

speech intelligibility depends on the underlying recognition

task. But it is known that humans are more robust to changes

in vocabulary sizes (Lippmann, 1997). Studying the effects
of vocabulary size on ASR in a binary masking framework
will help us understand how well such methods scale with
increasing task difficulty.

In what follows, we discuss two sets of ASR experi-

ments. Section II describes the first set of experiments con-

ducted on a small vocabulary task. Experiments using a

medium–large vocabulary are presented in Sec. III. For both

sets of experiments, we chose data sets that are commonly

used in robust ASR studies. The experiments performed

using the small vocabulary data set can be considered to

have a similar level of difficulty as the recognition task stud-

ied in Kjems et al. (2009). The results should, therefore, be

more directly comparable than those obtained using the

larger vocabulary. We conclude with a general discussion in

Sec. IV.

II. EXPERIMENT 1: SMALL VOCABULARY

A. Experimental setup

The small vocabulary experiments are performed using

the TIDigits corpus (Leonard, 1984), which consists of con-

nected digit utterances recorded in clean conditions. The vo-

cabulary size of the data set is 11 (1–9, oh and zero). A

sentence consists of one to seven digit strings; the number of

digits in a test utterance is not known during recognition.

Since there are 11 possible choices, the level of confusability

is similar to that of the sentences in the Dantale II corpus
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(Wagener et al., 2003), which was used in Kjems et al.
(2009). Note that although the vocabulary size of the

Dantale II corpus is larger, there is no ambiguity in the num-

ber of words per sentence (five) and the number of possible

choices at each word position (ten). We use the “man” subset

of the TIDigits corpus for our experiments. It consists of

4235 training utterances from 55 speakers. The test set con-

sists of 4311 sentences by a different set of 56 speakers. To

create a smaller subset that will enable us to run experiments

faster, we chose 620 sentences (about 2 k words) randomly

from this set.

We consider four noises commonly used in ASR experi-

ments: Speech shaped noise (SSN), 32-talker babble noise,

factory noise, and bottle noise. Each of these noises has dis-

tinct characteristics. SSN is stationary and is considered

more challenging than other stationary noise types, because

it is created by modulating white Gaussian noise using the

long-term average spectrum of speech from the TIDigits cor-

pus. Babble noise is highly non-stationary, and since it has

speech-like spectral characteristics it can potentially confuse

a recognizer. Factory noise offers an alternative form of non-

stationarity. Bottle noise has a significant amount of high-

frequency energy, unlike the other noises used in this study.

Four mixture SNRs are considered: �60, �5, 0, and 5 dB.

The SNR of �60 dB is tantamount to using the noise signal

directly [this was confirmed in experiments not reported in

the paper; see also Kjems et al. (2009)]. The other three

SNR conditions are commonly encountered by ASR systems

and pose significant challenges, resulting in poor perform-

ance when recognition is performed directly using the noisy

signal. To create a mixture, a randomly selected segment of

noise is added to the clean signal after scaling it to the

desired level. The scaling factor is calculated based on the

speech present frames that are detected using a crude energy

based voice-activity-detector (VAD). The output of the

VAD is manually corrected, if necessary. Inter-word pauses

are treated as part of speech; only the silences at the begin-

ning and the end of a sentence are marked as non-speech.

Both clean and noise signals are re-sampled to 16 kHz, wher-

ever applicable.

As mentioned in Sec. I, two types of binary masks are

considered in this work: The IBM and the TBM. The IBM is

created by comparing the energies of the clean signal and

the corresponding noise signal comprising a mixture in each

T-F unit. The TBM is created by comparing the clean signal

energy with SSN. Therefore, the IBM and the TBM are the

same when the background noise is SSN. For the remaining

noises, the TBM corresponds to the IBM for speech mixed

with SSN at 0 dB SNR. Figure 1 shows examples of the

TBMs with the RC set to �10 and 0 dB (top row). Clearly,

the mask pattern becomes sparser as RC increases. Also

shown in Fig. 1 are the IBMs for 0 dB mixtures under babble

and bottle noise conditions with the RC set to �6 dB (bottom

row). The masks in Fig. 1 look similar, but there are noticea-

ble differences due to the unique spectral characteristics of

each of the noises. In all, there are 28 test conditions (4

noises� 4 SNRs� 2 mask types less the TBM conditions for

SSN). At each test condition, RCs ranging from �40 to

10 dB are considered to obtain 34 ASR scores: �40 to

�20 dB in 5 dB steps, �20 to 10 dB in 1 dB step. We also re-

cord the performance obtained using an all-1 mask, which

corresponds to an RC (or LC) of �1 dB. This performance

may be slightly different from the unprocessed case depend-

ing on the spectral characteristics of the underlying noise

signal and the auditory filterbank used during resynthesis.

Nonetheless, the �1 dB RC condition will be referred to as

UN (for unprocessed) in the subsequent sections since the

difference is expected to be minor for the noises considered

in our study.

We employ conventional HMM based ASR systems.

Thirteen word level models are trained—one for each digit,

one for silence, and one for short pause. All models, except

the short pause model, have eight HMM states with the obser-

vation probability modeled as a mixture of ten diagonal

Gaussians. The short pause model has only one state that is

tied to the middle state of the silence model. The HMMs are

trained using the HTK Toolkit (Young et al., 2002) using the

clean utterances. The ASR features consist of mean and var-

iance normalized perceptual linear prediction (PLP) coeffi-

cients—a 39-dimensional feature vector consisting of 13

static coefficients, and their velocity and acceleration compo-

nents. The features are extracted using the ICSI tool Feacalc

(Ellis et al., 2010), with the frame size and the window length

set to 20 and 10 ms, respectively. It should be noted that var-

iance normalization is a crucial step to achieve reasonable

ASR performance using binary masked signals (Hartmann

et al., 2011). The ASR performance is quantitatively eval-

uated using the commonly used word accuracy measure

(Word Accuracy¼ 1 � Word Error Rate ¼ (# Correct Words

� # Insertion Errors)/# Words) as opposed to the percentage

of correctly recognized words used by Kjems et al. (2009).

Word accuracies are almost always smaller than the percent-

age of correctly recognized words, as they additionally penal-

ize the word insertion errors.

Binary masking is performed based on an auditory

representation of speech. A signal is first passed through a

64-channel gammatone filterbank with the center frequencies

spaced uniformly from 50 to 8000 Hz on the equivalent rec-

tangular bandwidth rate scale. The filtered signal is

FIG. 1. Examples of the ideal binary masks: The TBM (same as the IBM for

the SSN condition) with the RC set to �10 dB (top left) or 0 dB (top right),

and the IBM for 0 dB mixtures of speech and babble (bottom left) or bottle

noise (bottom right) with the RC set to �6 dB.
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windowed using a 20 ms rectangular window with 10 ms

overlap. A cochleagram is then created by calculating the

signal energy within each of these T-F units (Wang and

Brown, 2006). The cochleagrams of the premixed speech

and noise signals are used to create the binary masks (IBM/

TBM). Given a binary mask, the target is resynthesized from

the mixture using the sample-hold scheme described in

Kjems et al. (2009) [see also Wang and Brown (2006)].

Before resynthesis, the 0s in the binary masks are replaced

with an alternative floor value of 0.05 (or an attenuation of

the observed energy by �26 dB approximately), as it was

found to improve the overall performance. Similar observa-

tions have been made in other ASR studies (Hartmann,

2012). This observation is also consistent with a recent study

that shows that adding background noise to fill the “holes”

due to the 0s improves intelligibility of IBM masked signals

(Cao et al., 2011). Recognition is performed using PLP fea-

tures extracted from the resynthesized signals and the trained

HMM models.

B. Results and discussions

Under clean conditions, the ASR system gives an accu-

racy of 99.4%. Figure 2(a) shows the performance as a

function of LC at the four tested SNR conditions when the

background noise is SSN. For ease of comparison, the step

size of the abscissa is set to 5 dB. Figure 2 also shows the

UN performance, which improves from 31% to 90% as the

SNR increases from �5 to 5 dB. At �60 dB, essentially the

noise-only case, the UN performance is around 7%, which

may be considered as the chance level performance. In Fig.

2(b), we reproduce the human speech recognition results pre-

sented in Kjems et al. (2009), obtained under similar set-

tings. The similarities between the two plots are apparent.

As in the case of intelligibility experiments, each of the

four curves exhibits a peak and a plateau region where the

recognition accuracy is high, significantly better than the

corresponding UN performance. The width of the plateau,

measured as the difference between the maximum and the

minimum LCs for which the recognition accuracy is within

95% of the peak accuracy, progressively gets smaller with

decreasing mixture SNR. At 5 dB, the plateau ranges from

�15 to 4 dB, whereas at �60 dB it ranges from �67 to

�60 dB. It should be pointed out that the boundaries of the

plateau at �60 dB are surprisingly similar to those obtained

in Kjems et al. (2009), which are �69 to �59 dB [see Fig.

2(b)]. The performance plateau at 0 dB mixture SNR is from

�16 to �1 dB, and at �5 dB it is from �17 to �6 dB. The

widths of these intervals are smaller than those reported in

Kjems et al. (2009). For example, at �7.3 dB mixture SNR,

Kjems et al. (2009) observed a plateau from �25 to �2 dB.

Nonetheless, they are qualitatively similar. The difference

can be attributed to the superiority of human listeners in rec-

ognizing noisy speech compared to the current ASR

systems.

Another important observation from the plots is that the

LC at which the peak performance is obtained is not 0 dB at

any of the mixture SNR conditions. The optimal LCs are

�63, �12, �11, and �7 dB for �60, �5, 0, and 5 dB SNRs,

respectively. This observation is in accordance with human

speech recognition experiments showing that an LC lower

than 0 dB results in higher speech intelligibility (Brungart

et al., 2006; Li and Loizou, 2008; Kjems et al., 2009). We

believe this result is of particular significance to the research

community since it shows that the LC that maximizes the

SNR gain (i.e., 0 dB) maximizes neither speech intelligibility

nor ASR performance.

It can also be observed from Fig. 2(a) that, unlike the

results in Kjems et al. (2009), at some LC values the recog-

nition scores are lower than UN. This happens because at

these LCs the mask is really dense with only a few masked

T-F units. The resulting mask patterns become extremely

skewed compared to the ideal patterns, and cause the recog-

nizer to wrongly hypothesize that some digits exist at such

time frames. Such observations have also been made in other

human speech intelligibility experiments (Woodruff, 2012).

The results at �60 dB SNR extend the results reported

in Wang et al. (2008) and Kjems et al. (2009) to the ASR do-

main. Clearly, ideal binary masked noise signals are not only

recognizable to humans, but can also be recognized by ASR

systems. Our previous study has shown that the binary pat-

tern of the IBM can be used directly to improve ASR per-

formance (Narayanan and Wang, 2010, 2011). The current

FIG. 2. Machine and human speech recognition performance. (a) ASR word

accuracy for IBM-processed mixtures of speech and SSN as a function of

LC for the TIDigits (small vocabulary) corpus. Four mixture SNR levels are

shown. Also shown is the UN performance obtained using an all-1 mask to

process the noisy signal. (b) Percentage of words correctly recognized by

humans for IBM-processed mixtures of speech and SSN, for the Dantale II

corpus [from Kjems et al. (2009)]. Three SNR levels are shown. The UN

performances are inserted to the left of the respective curves.
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results reinforce those findings using a setting similar to the

one used in human speech intelligibility experiments.

The curves in Fig. 2(a) do not align well; the shape of

the curve at �60 dB SNR is similar to the remaining curves,

but is shifted along the LC axis. Therefore, we plot the

results as a function of RC (LC � SNR) in Fig. 3. The plots

in Fig. 3 align fairly well, similar to those in Kjems et al.
(2009). Since the binary pattern of the IBM does not change

for a fixed RC, this shows that, similar to human speech rec-

ognition, it is the pattern of the mask that is important even

for automatic speech recognition. The rest of the analyses

will, therefore, be based on RC rather than LC.

1. Performance versus RC

Performance curves for the remaining three noises are

plotted as a function of RC in Fig. 4. From Figs. 3 and 4, it

can be observed that the shapes of the curves match well as

the SNRs and the background noises vary. The shapes also

match well with those obtained in human recognition experi-

ments (Kjems et al., 2009). In most cases, the peak accuracies

are obtained at RCs close to �5 dB. The actual values differ

across SNRs and noise conditions. A notable exception is

when the noise is bottle and the SNR� 0 dB; the optimal RC

at these conditions is close to �15 dB. Even so, the perform-

ance plateau does include RCs in the range [�10 dB, �5 dB].

Figure 5 plots the performance plateau at the tested

SNRs and noise conditions. It can be seen that there is a

range of RC values, common across SNRs, noise conditions,

and mask types, at which excellent performance is obtained.

If the RC (or equivalently, the LC) is set to these values one

can expect good ASR performance irrespective of the

remaining variables. This range is typically between �7 and

�2 dB. We believe this observation will be important when

designing front-end mask estimation algorithms for ASR

systems.

Similar to Brungart et al. (2006) and Kjems et al.
(2009), it is possible to divide the performance curves in

Fig. 3 (and at other conditions) into three regions where RC

has varying effects on the overall performance. Region I is

defined for larger values of RC. At these conditions, the

ASR performance remains fairly similar regardless of the

mixture SNR. The performance in this region is significantly

lower than the peak performance in each condition, and

drops quickly with increasing values of RC. For the SSN

masker, Region I is located at RCs>�1 dB. Region II is

defined for RCs at which the ASR performance is within 5%

of the peak performance at that condition, i.e., the plateau

region. For the SSN masker, this happens when

�7 dB�RC��1 dB. Similar to Region I, the mixture SNR

does not have a big effect on the overall performance, even

though the peak recognition scores vary across conditions.

The remaining, smaller RC values define Region III, where

the mixture SNR plays a more significant role. As RC

decreases, the performance gap between SNRs widens in

Region III. For the SSN masker, this happens at RCs approx-

imately <�12 dB. It is interesting to see that not only do

these regions display a similar structure and properties as

FIG. 3. Word accuracy for IBM-processed mixtures of speech and SSN as a

function of RC for the TIDigits (small vocabulary) corpus. Four mixture

SNR levels are shown. Also shown is the UN performance obtained using

an all-1 mask to pass the noisy signal.

FIG. 4. Word accuracies for IBM-

processed (upper row) and TBM-

processed (lower row) mixtures as a

function of RC for the TIDigits

(small vocabulary) corpus. Each

column corresponds to one of the

following noises: Factory (left), 32-

talker babble (middle), and bottle

(right). Each part shows the per-

formance at four SNR conditions.

Also shown is the UN performance

obtained using an all-1 mask to pro-

cess the noisy signal.
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those obtained in human speech recognition experiments,

but also similar are the actual RC values for which these

regions are defined.

2. Effects of noise type, mask type, and SNR

It should be clear from Figs. 3–5 that each of these three

variables plays important roles in the overall performance,

especially in Region III. The influence of the noise type is

most evident when the results obtained using bottle noise are

compared with the rest. When the IBM is used, the optimal

RCs and the boundaries of the performance plateau are typi-

cally lower for bottle noise compared to the remaining

noises. But when the TBM is used, the plateaus overlap

across noise conditions to a larger extent. The optimal RCs

are also similar for factory, babble, and bottle noises. As in

Kjems et al. (2009), the width of the plateaus is typically

found to be slightly larger when the IBMs are used.

Table I shows the peak accuracies for various condi-

tions. As shown in Table I, the peak performance remains

fairly high at every condition. The dependence of the peak

performance on the underlying noise type increases with

decreasing SNR. For instance, the peak performance is

>95% when the SNR� 0 dB, regardless of the remaining

variables. But this number falls to 92% for the babble-TBM

condition at �5 dB, although it remains close to 95% for the

other noises. At �60 dB SNR, the performance additionally

depends on the mask type. The lowest performances are

obtained for babble noise using the TBM, possibly because

of the increased confusion, and bottle noise using the IBM,

because of the differences in its spectral characteristics com-

pared to speech. Note that the scores at these conditions are

still significantly better than the corresponding UN perform-

ance. The peak performance at these conditions is between

75% and 80%, whereas at the remaining conditions it is

between 85% and 91%. At almost all conditions, the use of

the TBM resulted in performance peaks similar to those

obtained using the IBM, except for again babble and bottle

noise at �60 dB. For the former, the IBM works significantly

better, whereas for the latter the TBM works better.

Finally, comparing the overall performance across con-

ditions, we can see that the performance curves for higher

mixture SNRs always reside above those for lower SNRs, as

expected. Similarly, the performance obtained using TBM-

processed signals is lower than those obtained using IBM-

processed signals, except for the bottle noise for which

TBM-processing results in a better performance at RCs

approximately greater than �5 dB. It is partly because IBM-

processing peaks at lower RCs for bottle noise; this is also

noticeable in human intelligibility results (Kjems et al.,
2009). The effect of noise type on the overall performance is

slightly more complex. At low SNRs, factory and bottle

noise conditions produce better performance profiles in

Region III than SSN and babble, whereas at higher SNRs,

SSN, factory, and bottle noises produce similar performance

profiles, all better than babble. In contrast, bottle noise pro-

duced the worst results in Regions I and II. The performance

profiles for the remaining three noises are quite similar in

these two regions.

FIG. 5. The performance plateau at

the tested conditions plotted against

RC for the TIDigits (small vocabu-

lary) corpus. The plots on the left

side show plateaus for IBM-

processed mixture signals, whereas

the ones on the right correspond to

TBM-processing. Also marked in

each plot are the RCs at which the

peak performance is obtained (the

pentagram).

TABLE I. Peak accuracies (in percentage) obtained under various condi-

tions for the TIDigits corpus.

IBM TBM

SNR SSN Factory Babble Bottle Factory Babble Bottle

�60 dB 90.6 88.8 86.0 78.6 86.6 75.1 85.0

�5 dB 95.2 95.3 94.9 94.5 94.2 91.6 94.6

0 dB 96.9 97.2 97.2 96.1 96.0 94.2 95.6

5 dB 98.0 98.2 97.9 97.0 97.3 96.3 97.2
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3. Mask density

In this section, we analyze the density of 1s in the masks

at different RCs in an attempt to understand how it factors

into the overall performance. We calculate both the overall

density and the density in each frequency channel using the

IBMs corresponding to 0 dB mixtures. Only the speech-

present frames are considered while calculating these

densities.

An analysis of the overall density showed that the best

performance in most conditions is obtained when the mask

density is roughly between 25% and 40%, regardless of the

noise condition. For the �60 dB signals, the performance

peaks when the density is roughly between 25% and 30%.

Kjems et al. (2009) note that for human speech recognition,

mask densities that correspond to the performance plateau

are in the range of 15% to 60%. It can be inferred from their

figures that the peaks occur when the density is close to

30%, similar to the observations made in our analysis. These

results may be used to guide mask estimation algorithms.

In Fig. 6, we plot the densities as a function of the center

frequency of the 64 channels used for T-F analysis.

Interesting patterns emerge from this figure. We can see that

for a subset of the channels, the density patterns at the opti-

mal RCs for the noise-only case (bold line) match across

noise conditions. SSN and babble have similar patterns in

high frequencies. They differ only in the low frequency

channels. This indicates that there are regularities in the

IBM patterns that may be exploited during mask estimation

even when the noise conditions differ. Using a dynamic

channel-dependent RC that maintains the mask density in a

specified range may allow algorithms to estimate masks that

improve both speech intelligibility and ASR results in a

wide range of conditions.

III. EXPERIMENT 2: MEDIUM–LARGE VOCABULARY

A. Experimental setup

The larger vocabulary experiments are conducted using

the Wall Street Journal corpus (WSJ0) (Paul and Baker,

1992). It is a speaker independent, 5 k word, closed vocabu-

lary recognition task. The training set consists of 7138 utter-

ances spoken by 83 native English speakers. The evaluation

set consists of 330 sentences from 8 speakers. Similar to the

first experiment, we randomly chose 125 utterances (about

2 k words) from this set to create a reduced test set that will

enable us to run experiments faster.

The experimental settings are quite similar to the first

experiment. The same four noise types and SNRs are consid-

ered. The only difference is that the SSN is now created by

modulating white Gaussian noise using the long-term aver-

age spectrum of the utterances from the WSJ0 corpus. An

energy based VAD is used, with manual corrections if neces-

sary, to identify the leading and trailing silences in clean sig-

nals. The silences are ignored while fixing the desired SNR

at each condition. There are 28 test conditions (4 noises� 4

SNRs� 2 mask types less the TBM conditions for SSN), as

before. In addition to the unprocessed condition, which cor-

responds to processing using an all-1 mask (RC¼�1 dB),

RCs are considered in the range of �20 to 10 dB in 1 dB

step. The lowest chosen RC of �20 dB was found to be suffi-

cient to ensure that the ASR scores drop below 95% of the

peak accuracy at all conditions. Based on the above setting,

31 ASR scores are obtained at each of the 28 conditions.

The ASR models consist of state-tied HMMs for word-

internal-triphones that are trained in clean conditions. Each

triphone is modeled as a 3-state HMM. The observation

density of a state is modeled as a mixture of 16 diagonal

FIG. 6. Density of 1s in the IBM for

0 dB mixtures of speech and SSN

(top left), factory (bottom left), bab-

ble (top right), and bottle (bottom

right) noise, as a function of channel

center frequency. Densities, aver-

aged across the utterances in the test

set, are shown for 7 RC values in the

range �40 to 10 dB. The RC corre-

sponding to each curve is marked on

its rightmost end. The RC (among

these values) at which the best per-

formance is obtained at �60 dB mix-

ture SNR is plotted in bold.
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Gaussians. The standard bigram language model and the

CMU pronunciation dictionary are used during the training/

testing phase. The HMMs are trained using the HTK

Toolkit. As features, we use the 39-dimensional, mean and

variance normalized PLP coefficients extracted using the

ICSI Feacalc tool, as in the first experiment. The signal proc-

essing applied to obtain IBM masked signals remains

unchanged.

B. Results and discussions

The word accuracy on the clean test set is 91.3%. The

drop in performance in clean conditions compared to the

small vocabulary task is attributed to the increased confus-

ability due to the larger vocabulary size and a more complex

language model.

Since it has already been established from the results in

Sec. II B that ASR performance, like human speech intelligi-

bility, correlates better with RC rather than LC, we will

focus our analyses on RC in this section. The ASR scores

obtained in the SSN condition are shown in Fig. 7. A step

size of 3 dB is used for the abscissa. The overall pattern is

qualitatively similar to those in Fig. 3, although there are

several differences. The UN performance is now substan-

tially lower. The curves do exhibit a peak and a plateau

region where performance is high. At 5 dB, this ranges from

�16 to �7 dB, whereas at �60 dB it is from �7 to �3 dB. In

terms of LC, the plateau ranges from �67 to �63 dB at

�60 dB SNR. In comparison, for the small vocabulary task it

ranges from �67 to �60 dB, and for human speech recogni-

tion, it ranges from �69 to �59 dB (Kjems et al., 2009). The

width of the plateaus is smaller than those obtained in

Experiment I with fewer overlapping values across SNR

conditions (only �7 dB in the SSN condition). The narrow-

ing of the plateaus with decreasing SNR can also be

observed from the figure, a trend that is consistent with the

small vocabulary and the human intelligibility results.

Consistent with the earlier observation, the LC at which

the peak performance is obtained in each condition is lower

than 0 dB. The optimal LC values are �65, �12, �8, and

�6 dB, respectively, at �60, �5, 0, and 5 dB SNRs. This fur-

ther shows that the SNR optimality would be unsuited for

ASR tasks.

The recognition results obtained at �60 dB mixture

SNR extend the results obtained in Experiment I. Although

we are not aware of any human speech intelligibility results

for binary masked noise signals using large vocabulary data,

based on our ASR results, we would expect a similar drop in

the overall performance compared to the results in Kjems

et al. (2009). Since humans are clearly more robust listeners

than the current machines (Lippmann, 1997), the drop may

not be as significant as those observed in our experiments.

The recognition results obtained at the remaining condi-

tions are shown in Fig. 8. Although the curves align well as

a function of RC, and the general trends remain more or less

unchanged, the performance has clearly dropped compared

to the small vocabulary task. The differences in performance

as the SNRs and noises vary are also more pronounced. The

peak recognition results are typically obtained at RCs near

�8 dB, with the exception of bottle noise at 5 dB mixture

FIG. 7. Word accuracy for IBM-processed mixtures of speech and SSN as a

function of RC for the WSJ0 (medium–large vocabulary) corpus. Four mix-

ture SNR levels are shown. Also shown is the UN performance obtained

using an all-1 mask to process the noisy signal.

FIG. 8. Word accuracies for IBM-

processed (upper row) and TBM-

processed (lower row) mixtures as a

function of RC for the WSJ0

(medium–large vocabulary) corpus.

Each column corresponds to one of

the following noises: Factory (left),

32-talker babble (middle), and bottle

(right). Each figure shows perform-

ance at four SNR conditions. Also

shown is the UN performance

obtained using an all-1 mask to pro-

cess the noisy signal.
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SNR. For this exception, the performance peaks at �15 dB

RC when the IBMs are used. These observations are consist-

ent with the small vocabulary results.

Figure 9 shows the performance plateau and the RC at

which the peak performance is obtained across the tested

SNRs and noise conditions. Unlike the results obtained on

the small vocabulary data, it is difficult to find a common

range of RCs across conditions at which the ASR scores

remain high. This is because the plateau is too narrow in

some cases, especially at �60 dB SNR (e.g., babble noise

when the IBM is used). If the �60 dB conditions are ignored,

then such a range exists around �9 dB for IBM-processed

signals and around �7 dB for TBM processed signals. The

width of these ranges is smaller than the small vocabulary

case.

We can also observe from Fig. 7 the three regions where

RC has varied effects on the overall performance. Region I

is defined for RCs>�3 dB, where changes to the mixture

SNR have a smaller effect on the overall performance.

Region II is not clearly distinguishable, but when the RC is

around �7 dB, performance is generally high. Clearly when

the RC��10 dB, the mixture SNR has a significant effect

on the overall performance. This range corresponds to

Region III. Compared to the small vocabulary case, it is

much harder to accurately label the three regions. More

importantly, Region II, where high performance is expected

independent of the mixture SNR, is not as well defined. It

should be noted that, in all three regions, SNR does have a

more significant effect on the recognition results in the larger

vocabulary case.

1. Effects of noise type, mask type, and SNR

The effects of the three variables are apparent in Figs.

7–9. Excluding the bottle-IBM condition at 5 dB SNR, the

peak accuracy at a particular mixture SNR is obtained at

similar RCs for the four noises as can be observed from

Fig. 9. The performance at the bottle-IBM condition at 5 dB

SNR peaks at a lower RC compared to the remaining condi-

tions, which is consistent with the small vocabulary results.

When the IBMs are used, the boundaries of the performance

plateau (and therefore, the widths) are similar at SSN, fac-

tory, and babble noise conditions. For bottle noise, it is simi-

lar when the SNR� 0 dB. At 5 dB, the plateau is shifted to

the left by a few decibels along the RC axis. When the TBMs

are used, more similar values are obtained across the four

noises. It is also noticeable that, unlike the small vocabulary

results, the plateaus at �60 dB are extremely narrow in some

conditions. For the babble-IBM and factory-TBM conditions,

for instance, the plateau includes only two RC values.

As shown in Table II, the three variables also affect the

peak recognition scores. Typically, a better performance is

obtained using the IBM with the exception of bottle noise at

�60 dB. Excluding the �60 dB conditions, IBM processing

results in similar peak values for SSN, factory, and babble

noises. The results are between 72% and 84%, with an aver-

age drop of around 4% absolute as the mixture SNR

decreases by 5 dB. For bottle noise, a slightly lower perform-

ance is obtained in these conditions. When using the

TBM, performances vary more significantly across noise

conditions. The lowest performances are obtained at the

FIG. 9. The performance plateau at

the tested conditions plotted against

RC for the WSJ0 (medium–large vo-

cabulary) corpus. The plots on the

left side show plateaus for IBM-

processed mixtures, whereas the

ones on the right correspond to

TBM-processing. Also marked in

each plot are the RCs at which the

peak performance is obtained (the

pentagram).

TABLE II. Peak accuracies (in percentage) obtained under various condi-

tions for the WSJ0 corpus.

IBM TBM

SNR SSN Factory Babble Bottle Factory Babble Bottle

�60 dB 53.5 46.6 46.0 29.5 44.2 26.6 35.0

�5 dB 72.6 73.6 73.8 68.0 69.2 59.2 65.0

0 dB 77.5 80.1 79.7 75.3 76.6 70.3 73.0

5 dB 82.9 82.0 83.1 79.9 81.8 77.8 78.8
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babble-TBM (about 27%) and the bottle-IBM conditions

(about 29%), both at �60 dB SNR. Even though these results

are low, they are significantly better than recognizing noisy

speech directly (i.e., the UN performance at �60 dB), which

is around 1% for all four noises.

The trends in overall performance as the SNR and mask

type vary are similar to those obtained in the small vocabu-

lary task. The effect of noise type is slightly different. At

�60 dB, when the IBM is used, the best performance is

obtained in SSN conditions, followed by factory, babble, and

bottle, in order. At other SNRs, the results are closer to one

another than in the small vocabulary case. The performance

obtained in babble noise conditions in Region I is slightly

better compared to the remaining noises. When using the

TBMs, the best performance is obtained in SSN conditions,

as one expects. At most SNRs, SSN is followed by factory,

bottle, and babble noise. Compared to the IBMs, the results

are more similar across conditions, especially in Region I,

when the TBMs are used.

IV. GENERAL DISCUSSION

Our study shows that binary masking is an effective

method to improve robust ASR performance in a wide range

of conditions, for both small and medium–large vocabulary

recognition tasks. There is a range of RC values at which

high ASR performance can be obtained, even in extremely

noisy conditions, by simply processing the noisy signal using

a binary mask. For the small vocabulary data, this range is

roughly around �5 dB, regardless of the mask type used. For

the medium–large vocabulary data, it is around �8 dB for

the IBM-processed signals and around �7 dB for the TBM-

processed signals. Effects of the variables like noise type,

mixture SNR, and mask type are found to be more pro-

nounced for the larger vocabulary task. Even then, the simi-

larities between the overall results under varying conditions

increase with increasing SNR. An analysis of the mask pat-

terns reveals that the peak performance in different noise

conditions is obtained at similar mask densities, and per-

channel density patterns show some similarity across noise

conditions. It is also clear from the results that the trends in

ASR and human recognition of binary masked signals are

qualitatively similar.

It should be emphasized that the goal of this study is to

understand the role of mask patterns in ASR, rather than to

simulate human speech recognition performance.

Nonetheless, as mentioned above, similarities have emerged

between the results obtained on the ASR tasks and those

obtained by Kjems et al. (2009) in their speech intelligibility

studies. Two important differences in our experimental set-

ting compared to Kjems et al. are worth noting. First, Kjems

et al. choose the mixture SNRs based on the speech recep-

tion threshold measured in the corresponding noise condition

(except for the �60 dB condition which is used in our

experiments as well). This is done since human performance

does not significantly drop, unlike ASR systems, in the com-

monly encountered SNR conditions that are used in our

experiments. Second, the signal processing involved in

resynthesizing the target signals is different. Unlike Kjems

et al. (2009), we replace the 0s in the binary mask with a

floor value of 0.05. This was found to significantly improve

the overall performance, especially in the medium–large vo-

cabulary experiments. It was also observed that the lower

performance when a value of 0 was used causes the width of

the plateaus to be slightly smaller compared to the results

shown in Figs. 5 and 9. The RCs at which performance peaks

are also larger. On the other hand, similar to the human intel-

ligibility results, the curves at various SNRs overlap better in

Region I, compared to the results in Fig. 3 when a value of 0

is used.

There are two major implications to the results obtained

in our experiments. The first one is about the potential of bi-

nary masking in robust ASR. The current work extends the

results in Hartmann et al. (2011), where IBMs defined using

a fixed LC of 0 dB are used to show that direct masking can

produce a similar or better performance than missing feature

methods. Three additional observations are in order. First,

by appropriately setting the SNR threshold (LC or RC), ASR

results can be improved further in commonly encountered

SNR conditions. Second, significant ASR results can be

obtained even in extremely noisy (or the noise-only) condi-

tions by binary masking. Finally, an alternative mask defini-

tion based solely on the target signal can produce significant

improvements. IBM (or TBM) processing results in

improvements that are several orders of magnitude better rel-

ative to recognizing noisy speech. These observations are

important for mask estimation algorithms intended as a fron-

tend for robust ASR.

One insight from our work pertaining to ASR is that the

commonly used LC of 0 dB that maximizes the SNR gain is

unlikely the most suitable criterion. In fact, the LC of 0 dB is

not even in the performance plateau in most conditions.

Interestingly, the same holds for human speech intelligibil-

ity. This suggests that, if the goal of speech processing is to

improve intelligibility or ASR performance, one should aim

at producing a signal that retains the gross spectro-temporal

modulation characteristics of the target speech. Furthermore,

using a criterion based on the optimal RC may be more

suitable.

The second implication is about the applicability of

using ASR to model and predict intelligibility of binary

masked signals. Note that ASR can be used as a predictor of

speech intelligibility if a monotonic relationship exists

between human and ASR performance, even if the actual

ASR scores are different. A number of methods have been

proposed in the literature to predict intelligibility of

enhanced signals (Christiansen et al., 2010; Taal et al.,
2011). Most of them are based on some form of comparison

between the clean signal and the enhanced noisy signal.

Without the need to access clean speech, an ASR based sys-

tem has advantages over such methods. Models of speech

perception based on ASR have been proposed previously.

Cooke (2006) uses oracle masks and a missing data recog-

nizer in his glimpsing model. The system is able to model

the perception of vowel-consonant-vowel syllables in multi-

talker interference. Srinivasan and Wang (2008) use the

IBM and a CASA system to model energetic and informa-

tional masking in multi-talker conditions, where speech
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recognition is based on missing data methods. Compared to

these models, the formulation presented in this study is

much simpler and more directly related to the human percep-

tion of binary masked signals. It further accounts for recent

intelligibility results which cannot be explained by these ear-

lier models, e.g., intelligible speech from IBM-modulated

noise. On the other hand, our study does not attempt to simu-

late speech perception data quantitatively.
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