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Abstract

Processing noisy signals using the ideal binary mask has been
shown to improve automatic speech recognition (ASR) perfor-
mance. In this paper, we present the first study that investi-
gates the role of mask patterns in ASR under varying signal-
to-noise ratios (SNR), noise conditions and mask definitions.
Binary masks are typically computed either by comparing the
local SNR within a time-frequency unit of a mixture signal with
a threshold termed the local criterion (LC), or by comparing the
local target energy with the long-term average energy of speech.
Results show that: (i) Akin to human speech recognition, binary
masking can significantly improve ASR even when the mixture
SNR is as low as -60 dB. (ii) The difference between the LC
and the mixture SNR is more correlated to the recognition ac-
curacy than LC. (iii) The performance profiles in ASR are quali-
tatively similar to those obtained for human speech recognition.
(iv) The LC at which the peak performance is obtained is lower
than 0 dB, which is the optimal threshold as far as the SNR gain
of processed signals is concerned. This indicates that maximiz-
ing SNR gain may not be the optimal criterion to improve either
human or machine recognition of noisy speech.

Index Terms: computational auditory scene analysis, ideal bi-
nary mask, automatic speech recognition, mask pattern.

1. Introduction

Robustness of human listeners in segregating and recognizing
speech in noisy conditions is attributed to their ability of au-
ditory scene analysis (ASA) [1]. According to ASA, humans
perform segregation by first forming time-frequency (T-F) seg-
ments utilizing primitive speech cues like periodicity, common
onset/offset, etc. [1, 2]. The segments are then grouped in
the second stage using grouping rules and top-down schemas.
Computational auditory scene analysis (CASA) tries to build
speech separation systems guided by ASA principles [2].

The ideal binary mask (IBM) has been proposed as a main
computational goal of CASA [2]. The IBM, originally proposed
on the basis of the perceptual phenomenon of auditory mask-
ing, is a binary matrix defined in the T-F domain. A value of 1
(unmasked T-F units) means that the corresponding T-F unit is
dominated by the target, whereas a 0 (masked T-F units) means
that it is dominated by the masker. Formally, the IBM is defined
as:

| 1 ifX(m,c) —N(m,c) > LC
IBM(m, c) = { 0 otherwise M
Here, X(m, c) and N(m,c) are the target and the noise (or
masker) energy, respectively, expressed in decibels. m indexes
time and c indexes frequency. LC is the local SNR threshold,
typically set to 0 dB. By varying LC, one can alter the num-

ber of T-F units that are labeled 1. It has been noted that the
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IBM is invariant to the co-variance of mixture SNR and LC [3].
In other words, if the SNR and the LC are varied by the same
amount, the IBM remains the same. Therefore, Kjems ef al. [3]
introduced the term relative criterion (RC), defined as the dif-
ference between LC and SNR. The pattern of the IBM remains
unchanged for a given RC, irrespective of how the SNR and the
LC change. Binary masks can also be defined by comparing the
target energy with the long-term average spectrum of speech
[3]. Such masks, obtained by replacing N in (1) with the long-
term average energy of speech, are called target binary masks
(TBM), as they depend only on the target signal and not on the
underlying noise in a mixture.

A number of studies have been conducted to investigate the
effect of various factors on the intelligibility of binary masked
signals [3, 4]. They have shown that processing noisy signals
using the IBM (or the TBM) can significantly improve intelli-
gibility for both normal hearing and hearing impaired listeners.
Results further show that there is a wide range of LC (or RC)!
values that results in very high intelligibility, and that an LC less
than 0 dB is more suited to improve intelligibility. A value of
-6 dB is suggested [3].

The current work is mainly motivated from two speech in-
telligibility studies reported in [5] and [3], respectively. In [5],
it is shown that noise signals processed using the IBM produce
intelligible speech. Kjems et al. [3] extend this work to study
the role of mask pattern in speech intelligibility, and show that
even though the mixture SNR, mask type (IBM or TBM) and
the masker type play significant roles in the intelligibility of
binary masked signals, the results align well when viewed as
a function of RC. i.e., peak intelligibility scores at any given
condition are typically obtained for similar values of RC, irre-
spective of the remaining variables. The two studies strongly
suggest that it is the pattern of the binary mask that is impor-
tant as far as intelligibility is concerned. The goal of the current
study is to understand whether similar trends exist for automatic
speech recognition in noise.

Binary masks are used in ASR mostly in the missing data
framework [6, 7]. More recently, Hartmann et al. [8] showed
that binary masked signals can directly be used by ASR sys-
tems without marginalizing [6] or reconstructing [7] the masked
T-F units, with the ASR features appropriately normalized.
This suggests that, similar to human speech recognition, binary
masking alone can significantly boost ASR performance. It is
of interest, therefore, to study whether the general trends in in-
telligibility of binary masked signals also hold in robust ASR.
The results could significantly impact the research in the fields
of both ASR and speech separation.

The main theme of this work is to study how a mask pattern

INote that, for a given mixture SNR, fixing one of (LC, RC), fixes
the value of the other, since RC = LC — SNR.
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affects ASR performance, and therefore, similar to [3], the fo-
cus will be on RC rather than LC. The first objective is to study
if there is a range of RC values for which significant improve-
ments in ASR can be obtained compared to directly recognizing
noisy speech. There are several related questions that are of in-
terest. Does this range contain the commonly used LC value of
0 dB that maximizes the SNR gain [9]? Does this range depend
on the mixture SNR and the noise condition? The second goal
of the experiments is to understand how the mask definition af-
fects performance. TBMs have been shown to be quite useful
for human speech recognition. Are they also useful for robust
ASR?

This paper is organized as follows. The experimental setup
is described in Section 2. The results of the experiments are
described in Section 3. We conclude with a general discussion
in Section 4.

2. Experimental setup

The experiments are performed using the ‘man’ subset of the
TIDigits corpus [10], which consists of connected digit utter-
ances recorded in clean conditions. The vocabulary size of the
data setis 11 (1-9, oh and zero). A sentence can consist of 1 to
7 digit strings. Since there are 11 possible choices, the perplex-
ity is similar to that of the recognition task in [3]. The training
set consists of 4235 sentences from 55 speakers and the test set,
4311 sentences by a different set of 56 speakers. To create a
smaller subset that will enable us to run experiments faster, we
randomly chose 620 sentences (around 2k words) from this set.
We use speech shaped noise (SSN) and factory noise in our
experiments. SSN is stationary and is considered more chal-
lenging than other stationary noise types like white noise. It
is created by modulating white Gaussian noise using the long-
term average spectrum of speech from the TIDigits corpus. Fac-
tory noise is non-stationary and is widely used in ASR studies.
Four SNR conditions are considered: -60 dB, -5 dB, 0 dB and
5dB. -60 dB is equivalent to using the noise signal directly (ver-
ified in experiments not reported in the paper) [3]. The other
three SNR conditions are commonly encountered by ASR sys-
tems and pose significant challenges, resulting in poor perfor-
mance when recognition is performed directly using the noisy
signal. To create a mixture, a randomly selected segment of
noise is added to the clean signal after scaling it to the desired
level. The leading and trailing silences are ignored while calcu-
lating the scaling factor. All signals are re-sampled to 16 kHz.

RC =-10dB
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Figure 1: The TBM (same as the IBM for the SSN condition)
with the RC set to -20 dB (top left), -10 dB (top right), 0 dB
(bottom left) or 10 dB (bottom right).
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As mentioned, two types of binary masks are considered in
this work: the IBM and the TBM. The IBM is created by com-
paring the energies of the clean signal and the corresponding
noise signal comprising a mixture, in each T-F unit. The TBM
is created by comparing the clean signal energy with SSN. Note
that the IBM and the TBM for the SSN condition remain un-
changed. For factory noise, the TBM corresponds to the IBM
for speech mixed with SSN at 0 dB SNR. Fig. 1 shows an exam-
ple of how the TBM changes as the RC is varied from -20 dB to
10 dB. As can be seen, the mask pattern becomes sparser as RC
increases. Unlike the TBMs, the IBM patterns vary depending
on the background noise. There are 12 test conditions: 2 noises
x 4 SNRs x 2 mask types less the TBM conditions for SSN.
We consider RCs in the range -40 dB to 10 dB. 35 ASR scores
are obtained at each condition: the scores corresponding to 34
RC values (-40 dB to -20 dB in 5 dB steps, -20 dB to 10 dB in
1 dB steps) and the unprocessed condition.

We employ conventional HMM based ASR systems. 13
word level models are trained, one for each digit, one for si-
lence and one for short pause. All models, except the short
pause model, have 8 HMM states with the observation proba-
bility modeled as a mixture of 10 diagonal Gaussians [6]. The
short pause model has only one state, which is tied to the mid-
dle state of the silence model. The HMMs are trained using
the HTK Toolkit [11] using the clean utterances. We use mean
and variance normalized perceptual linear prediction (PLP) co-
efficients as features — a 39 dimensional feature vector consist-
ing of 13 static coefficients and their velocity and acceleration
components. The frame size and the window length are set to
20 msec and 10 msec, respectively, during feature extraction.
It should be noted that variance normalization is a crucial step
to achieve reasonable ASR performance using binary masked
signals [8]. The ASR performance is quantitatively evaluated
using the commonly used word accuracy measure.

Binary masking is performed using an auditory repre-
sentation of speech. A signal is first passed through a 64-
channel gammatone filterbank with the center frequencies
spaced equally from 50 Hz to 8000 Hz on the ERB rate scale
[2]. The filtered signal is then windowed using a 20 msec rect-
angular window with 10 msec overlap. A cochleagram is then
created by calculating the signal energy within each of these
windows. Since the goal is to study how the ideal binary pat-
terns affect performance, to create the masks the SNR at each
T-F unit is calculated using the cochleagrams of the premixed
signals and compared with the SNR threshold (RC). Given a bi-
nary mask, the target is resynthesized from the mixture using
the sample-hold scheme described in [3] (see also [2]). Before
resynthesis, the Os in a binary mask are replaced with an alter-
native floor value (0.05 in our experiments, or an attenuation of
the observed energy by approximately -13 dB), as it was found
to improve the overall performance. This observation is con-
sistent with a recent study that shows that adding background
noise to fill the ‘holes’ due to the Os improves intelligibility of
ideal binary masked signals [4]. Recognition is performed us-
ing the PLP features extracted from the IBM/TBM processed
signals and the HMMs trained in clean conditions.

3. Results and discussions

Under clean conditions, the ASR system gives an accuracy of
99.4%. Fig. 2(a) shows the performance when the noise back-
ground is SSN, at the four tested SNR conditions as a function
of RC. For ease of comparison, the step size of the abscissa
is set to 5 dB. Also shown is the performance obtained in the
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Figure 2: Word accuracy as a function of RC for the TIDigits corpus. Four mixture SNR levels are shown, along with the corresponding
UN performance, for (a) IBM processed mixtures of speech and SSN, (b) IBM-processed mixtures of speech and factory noise, and
(b) TBM-processed mixtures of speech and factory noise. An absolute difference in word accuracy > 2.6% is always statistically
significant (p < 0.05, using a one-tailed Z-test), although a lower difference may be significant at high/low word accuracy levels.

unprocessed condition (UN). The UN performance improves
from 31% to 90% as the SNR increases from -5 dB to 5 dB. At
-60 dB, which is equivalent to the noise-only case, performance
is around 7%, which may be considered as the chance level per-
formance. Note that, if the curves were plotted in terms of LC,
they would be shifted in position in abscissa and would not be
as well aligned as in Fig. 2(a). Since the binary pattern of the
IBM does not change for a fixed RC, the results show that, sim-
ilar to human speech recognition, it is the pattern of the mask
that is important even for automatic speech recognition.

As in the case of intelligibility experiments, each of the four
curves exhibits a peak or a plateau region where the ASR ac-
curacy is high, and significantly better than the corresponding
UN performance. The width of the plateau region, measured as
the difference between the maximum and the minimum LCs for
which the recognition accuracy is within 95% of the peak ac-
curacy, progressively gets smaller as the mixture SNR becomes
lower. At 5 dB, the plateau ranges from -15 dB to 4 dB, whereas
at -60 dB it ranges from -67 dB to -60 dB. It should be pointed
out that the boundaries of the plateau at -60 dB are surprisingly
similar to those obtained in [3] (-69 dB to -59 dB, measured
for the average percentage of correctly recognized words as op-
posed to word accuracy). The performance plateau at 0 dB mix-
ture SNR is from -16 dB LC to -1 dB LC, and at -5 dB it is from
-17 dB to -6 dB. The widths of these intervals are smaller than
those reported in [3] (for e.g. at -7.3 dB mixture SNR, Kjems et
al. [3] observed a plateau from -25 dB to -2 dB). Nonetheless,
they are qualitatively similar. The difference can be attributed to
the superiority of human listeners in recognizing noisy speech,
compared to current ASR systems.

It can also be observed from Fig. 2(a) that, unlike the re-
sults in [3], at some RCs the recognition scores are lower than
UN. This happens because at these RCs, the mask is very dense
with only a few masked T-F units. These patterns become ex-
tremely skewed compared to the ideal patterns, and cause the
recognizer to wrongly hypothesize that some digits exist at such
time frames. Such observations have been made in other human
speech intelligibility experiments as well [12].

The results at -60 dB SNR extend the results reported in
[5, 3] to the ASR domain. Clearly, ideal binary masked noise
signals are not only recognizable to humans, they can also be
recognized by ASR systems. Our previous study has shown that
the binary pattern of the IBM can be used directly to improve
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ASR performance [13]. These results reinforce those findings,
using a setting similar to the one used in human speech intelli-
gibility experiments.

Figs. 2(b) and 2(c) plot performance curves for IBM and
TBM processed signals, respectively, in factory noise condi-
tions. It can be observed that the shape of the curves matches
well as the SNRs and noises vary. The shapes also match well
with those obtained in human speech recognition experiments
[3]. In most cases, the peak recognition accuracies are obtained
at RCs close to -5 dB, although the actual values vary across
SNRs and noises. It can also be seen that there is a range of RC
values common across SNRs, noises and mask types at which
excellent performance is obtained. If the RC (or equivalently,
the LC) is set to these values during mask estimation one can
expect good ASR performance, irrespective of the remaining
variables. This range is typically between -7 dB and -2 dB. We
believe this observation will be useful while designing frontend
mask estimation algorithms for ASR systems.

The peak performance remains high at every tested condi-
tion; the peak accuracy is close to 95% when the SNR > -5 dB,
regardless of the remaining variables. Even for the noise-only
case, the accuracy is close to 90% when the IBM is used. When
the TBM is used, an accuracy of 87% is obtained in factory
noise conditions, clearly better than the UN performance.

Another important observation that we can make from the
plots is that the LC at which the peak performance is obtained
is not 0 dB at any of the test conditions. For e.g., for the SSN
condition, the optimal LCs are -63 dB, -12dB, -11 dB and -7 dB
respectively, for -60 dB, -5 dB, 0 dB and 5 dB mixture SNRs.
This observation is in accordance with human speech recogni-
tion experiments that show that an LC lower than 0 dB results
in higher speech intelligibility. We believe this result is of ut-
most significance to the research community since it shows that
the LC that maximizes the SNR gain maximizes neither speech
intelligibility nor ASR performance.

3.1. Performance regions in RC axis

Similar to [3], it is possible to divide the performance curves
in Fig. 2 into three regions where RC has varied effects on the
overall performance. Region I is defined for large values of
RC. At these conditions, the overall ASR performance remains
fairly similar irrespective of the mixture SNR. The performance
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in this region is significantly lower than the peak performance
in each condition, and drops quickly with increasing values of
RC. For the SSN masker, Region I is located at RCs > -1 dB.
Region II is defined for RCs at which the ASR performance is
within 5% of the peak performance. For the SSN masker, this
happens when -7 dB < RC < -1 dB. Similar to Region I, the
mixture SNR does not have a big effect on the overall perfor-
mance even though the peak recognition scores vary slightly
across conditions. In Region III, the mixture SNR plays a huge
role in the overall performance. As RC decreases, the perfor-
mance gap across SNRs widens in Region III. For the SSN
masker, this happens at RCs approximately < -12 dB. It is quite
interesting to see that not only do these regions display simi-
lar structure and properties as those obtained in human speech
recognition experiments, the actual RCs for which the regions
are defined are also quite similar. Such similarities may turn out
to be useful in predicting human performance.

Finally, comparing the overall performance across condi-
tions, we can see that the performance curves at higher mixture
SNRs always reside above those for lower SNRs, as expected.
Although the performance obtained using TBM-processed sig-
nals is lower than those obtained using IBM-processed signals,
they are still comparable. The effect of noise type is more pro-
nounced in Region III, where better performance profiles are
obtained in factory noise conditions. The performance profiles
for the 2 noises are quite similar in Regions I and II.

We have also run experiments using other noises like babble
and bottle noise, which we do not present due to limitations of
space. But it is worth noting that the trends from these experi-
ments remain unchanged and match the results presented in [3].
As part of future work, we will examine how the performance
is affected as the vocabulary size of the task changes.

4. General discussion

There are two significant implications to the results described
in the previous section. The first one is about the potential of
binary masking in ASR. The current work extends the results in
[8], which showed that binary masking alone can produce sim-
ilar or better performance than other commonly used missing
data methods. We show that, by appropriately setting the SNR
threshold (LC or RC), the performance can be improved further
even in extremely noisy (or the noise-only) conditions. This re-
sult is important for frontend mask estimation algorithms in ap-
propriately setting their computational objective, which would
be critical to improve ASR performance. One insight from the
work is that the commonly used LC of 0 dB that maximizes
SNR gain is not a suitable threshold if the goal is to maxi-
mize ASR performance. Interestingly, the same holds for hu-
man speech intelligibility.

The second implication is about the applicability of using
ASR to predict intelligibility of binary masked signals. As
noted before, the ASR results obtained in our experiments are
qualitatively similar to the intelligibility results obtained in [3].
Even if the performance is lower than that of humans, if a mono-
tonic relationship exists between human and ASR performance,
it may be used for predicting characteristics of human speech
perception. A number of models have been proposed in the lit-
erature to predict intelligibility of enhanced signals [14]. Most
of them are based on some form of comparison between the
clean signal and the enhanced noisy signal. An ASR based sys-
tem has several advantages over such a system. For instance, it
does not need the clean reference signal to predict intelligibil-
ity. Moreover, if the ASR error trends are similar to those of
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humans, the model can be used to predict human performance.
Other models of speech perception based on ASR have been
proposed previously (e.g. [15]), but the formulation presented
in this study is much simpler and accounts for recent intelligi-
bility results which cannot be explained by earlier models, e.g.
intelligible speech from IBM-modulated noise.

To conclude, the current study has shown that the trends in
ASR and human recognition of binary masked signals are quali-
tatively similar. There is a common range of RC values at which
high ASR performance can be obtained even in extremely noisy
conditions, by simply processing the noisy signal using a binary
mask. The results show that this observation holds regardless of
mixture SNR, noise type and mask type.
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