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Causal Deep CASA for Monaural Talker-Independent
Speaker Separation

Yuzhou Liu

Abstract—Talker-independent monaural speaker separation
aims to separate concurrent speakers from a single-microphone
recording. Inspired by human auditory scene analysis (ASA) mech-
anisms, a two-stage deep CASA approach has been proposed
recently to address this problem, which achieves state-of-the-art
results in separating mixtures of two or three speakers. A main
limitation of deep CASA is that it is a non-causal system, while
many speech processing applications, e.g., telecommunication and
hearing prosthesis, require causal processing. In this study, we
propose a causal version of deep CASA to address this limitation.
First, we modify temporal connections, normalization and cluster-
ing algorithms in deep CASA so that no future information is used
throughout the deep network. We then train a C-speaker (C' > 2)
deep CASA system in a speaker-number-independent fashion, gen-
eralizable to speech mixtures with up to C speakers without the
prior knowledge about the speaker number. Experimental results
show that causal deep CASA achieves excellent speaker separation
performance with known or unknown speaker numbers.

Index  Terms—Monaural speaker separation, talker-
independent speaker separation, deep CASA, causal processing.

1. INTRODUCTION

NTERFERENCE from competing speakers is considered a

major challenge in speech communication, automatic speech
processing systems, and hearing prosthesis. Based on deep
learning, many talker-independent monaural speaker separation
algorithms have been proposed in recent years to address this
problem. Two main approaches are deep clustering (DC) [6]
and permutation invariant training (PIT) [13]. Deep clustering
learns an embedding vector for each time-frequency (T-F) unit of
the mixture. Clustering the embedding vectors results in binary
T-F masks, which can be used to separate the speakers from
the mixture. In PIT, each output layer in a deep neural network
(DNN) is associated with one speaker in the mixture. During
training, PIT examines the losses with respect to all possible
output-speaker permutations, and optimizes the DNN using the
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minimum loss. Based on the types of output-speaker pairing,
PIT can be categorized into frame-level PIT (tPIT), where the
pairings can change frame by frame, and utterance-level PIT
(uPIT), where the pairing is fixed throughout each training
utterance. Many extensions have been proposed recently for DC
and PIT, including [15], [19], [20], [22], [27], [28]. Inspired by
research in computational auditory scene analysis (CASA) [25],
we recently proposed deep CASA [18] which breaks down the
speaker separation task into two stages, i.e., tPIT based simulta-
neous grouping and clustering based sequential grouping. Deep
CASA achieves frame-level separation and speaker tracking in
turn. Compared to one-stage PIT or DC which optimizes the two
objectives at the same time, deep CASA substantially mitigates
the mistakes in speaker tracking, and leads to improvements in
speaker separation performance.

Although deep CASA produces the state-of-the-art speaker
separation results, it has a major limitation from the viewpoint
of real-world deployment: it is non-causal. Causal processing
is a major requirement in many real-time speech applications,
including telecommunication and hearing aids. For example,
mobile communication involves real-time interaction and is sen-
sitive to processing delay. For hearing prosthesis, a processing
delay longer than 10 ms would create a misalignment between
real and processed signals, hampering speech perception [5].
The deep CASA system [18] utilizes future information as long
as 9 seconds for separation and speaker tracking, making it
unsuitable for these applications. It is therefore important to
develop a causal version of deep CASA.

Models based on uPIT can be easily extended to the causal
version if causal DNNs are utilized [13], [20]. However, lacking
future information for speaker tracking [1], causal uPIT signif-
icantly underperforms non-causal uPIT in a variety of settings,
as demonstrated in [1], [13], [20]. On the other hand, even with
causal DNNss, clustering based methods like DC [6] and deep
attractor networks (DAN) [19] struggle to operate causally, as
the centroids of clusters are hard to estimate in an online fashion.
Recently, researchers start to incorporate uPIT as a parallel
training target for DC based systems, and use the spectral outputs
from uPIT during inference [1], [26]-[28]. In this way, speaker
separation can be achieved causally without a clustering step [1].

Another challenge for real-world deployment is that the
number of concurrent speakers is usually unknown beforehand.
Again, DC and DAN fail to operate properly in such a scenario,
as the speaker number is needed for clustering. To tackle this
problem, Higuchi et al. [7] perform offline source counting by
computing the rank of the covariance matrix of the embedding
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vectors. An accuracy of 67.3% is achieved for counting two-
and three-speaker mixtures. The non-causal setup and mediocre
performance in [7] make the study far from practical utility.
On the other hand, a C-output uPIT model can be directly
applied to speech mixtures with up to C' speakers, without
the prior knowledge about the speaker number, as some of the
outputs can be trained to generate silence as a placeholder [13].
Another direction for speaker-number-independent separation
is to recursively remove one speaker at a time from the mix-
ture [12], [23]. In [23], a one-and-rest permutation invariant
training (OR-PIT) algorithm is proposed to train such a network.
A binary classifier is trained to produce the stopping signal for
the system. Satisfactory results have been achieved on two- and
three-speaker mixtures. However, it should be noted that the
stopping signal generator needs the entire utterance as input,
and can not be easily extended to causal processing.

This study aims to make deep CASA causal. First, all non-
causal connections and normalization are replaced with their
causal versions throughout the deep CASA network. We then
propose two causal clustering algorithms for the sequential
grouping stage, both matching the performance of non-causal
clustering. Finally, we fine-tune a three-speaker deep CASA
system with two-speaker mixtures. The proposed causal deep
CASA algorithm achieves excellent results on both two- and
three-speaker mixtures, with no knowledge about the speaker
number.

The rest of the paper is organized as follows. Section Il reviews
the non-causal deep CASA system. Causal processing is intro-
duced in Section III. Section IV presents experimental results
and comparisons. Concluding remarks are given in Section V.

II. A DEEP CASA APPROACH TO MONAURAL
SPEAKER SEPARATION

Monaural speaker separation aims to separate C' speakers
z.(n), c=1,...,C, from a single-microphone recording of
speech mixture y(n), where y(n) = Zle x.(n) and n indexes
time. In this section, we review two versions of deep CASA
in [18], namely a two-speaker version and a multi-speaker
version. The systems are presented in two parts: simultaneous
grouping and sequential grouping.

A. Simultaneous Grouping

Given the complex short-time Fourier transform (STFT) of
the mixture Y (¢, f), where ¢ and f index frame and frequency,
simultaneous grouping is performed to separate the C' speak-
ers at the frame level. C outputs, Xc(t, f)(c=1,...,C), are
generated to estimate the complex STFT of the C' speakers. The
training of simultaneous grouping follows the tPIT criterion,
where the frame-level output-speaker pairing is chosen as the
pairing that minimizes the [, loss function over all possible
speaker permutations. The outputs are then organized to C'
streams using the resulting tPIT pairings:

Xc(t7f)*>)/\(0c(t7f)’ CZ]‘?"'?C’ (1)

Here o, denotes the mapping from speaker outputs to speaker
streams, which can change across frames. Next, C' time-domain
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signals, @,,(n) (c=1,...,C), are generated by applying in-
verse STFT to the organized streams. Finally, a signal-to-noise
ratio (SNR) objective .JiPIT=SNR jg ysed to tune the network:

Ynze(n)?

xC(n) — Zo, (n)]

c
tPIT-SNR
J ; Olog SN 5 )

A Dense-UNet architecture is used for simultaneous group-
ing, as shown in Fig. 1. It consists a sequence of upsampling
layers, downsampling layers, and dense convolutional blocks,
and can be divided into two halves. In the first half, an alter-
nation of dense convolutional blocks and downsampling layers
projects the input feature map into a high level of abstraction.
Dense blocks and upsampling layers are then alternated in the
second half to restore the encoded features back to the original
resolution. The dense blocks at the same hierarchical level in
the two halves are linked with skip connections. The output
layers in Dense-UNet estimate complex T-F masks for the C'
speakers, which are then multiplied with Y (¢, f) to generate
source estimates X, (t, f). Other details, including the number of
layers, downsampling, upsampling, dense convolutional blocks,
and frequency mapping layers, follow those in [18].

B. Sequential Grouping

The sequential grouping stage tracks all frame-level spectral
estimates X (t, f), and assigns them to the C speakers. Mixture
spectrogram and C' spectral estimates (including real, imaginary
and magnitude STFT) are stacked to form the input to this stage.
Based on the number of concurrent speakers, two versions of
sequential grouping are presented as follows.

1) Two-Speaker Sequential Grouping: When there are only
two concurrent speakers, a DNN can be trained to project
each frame-level input to a D-dimensional embedding vector
V(t) € R™P . The target label is a two-dimensional indicator
vector which gives a one-hot representation of the tPIT output
assignment, denoted by A (t). During the training of tPIT, if the
minimum loss is achieved when Xl(t) is paired with speaker
1, and X, (t) is paired with speaker 2, we set A(t) to [1 0].
Otherwise, A(t) is set to [0 1]. A weighted objective function
betweenV (1" x D, where I’ denotes the total number of frames)
and A (T x 2) is defined:

JPCW —[W(VVT — AAT)W || 3)

In the above equation, W denotes a 7" x T diagonal matrix
whose main diagonal corresponds to a frame-level weight vector
w(t) = %, where LD(t) represents the frame-level loss
difference (LD) between the two possible speaker assignments.
[| - || denotes the Frobenius norm.

Minimizing JP¢~W forces V(t) corresponding to the same
optimal assignment to get closer during training, and otherwise
to become farther apart. Clustering V (¢) with the K-means
algorithm yields a binary label for each frame, which can be used
to organize the frame-level outputs from simultaneous grouping.
Deep CASA with such a sequential grouping stage is denoted
by two-speaker deep CASA in this study.
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Fig. 2. Diagram of multi-speaker sequential grouping.

Two-speaker sequential grouping works excellently in the
case of two concurrent speakers, as there are only two possible
output assignments, i.e., swap or not swap. The trained V (¢)
exhibits two unique patterns accordingly. However, when the
number of speakers C' increases, the number of possible assign-
ments is C! =1 x 2 x --- x C, and it becomes intractable to
use one vector V(¢) to represent all the assignments. Even if
V() can be trained to convey C' patterns, it is difficult to figure
out the pattern-assignment pairing during inference.

2) Multi-Speaker Sequential Grouping: To avoid the in-
tractable embedding patterns, for a C-speaker (C' > 2) mixture,
we use a DNN to predict C' embedding vectors at each frame
V.(t) € RY*P, each corresponding to one output X.(t) of the
Dense-UNet, as shown in Fig. 2. The target label for V.(¢) is a
C'-dimensional indicator vector, denoted by A (). During the
training of tPIT, if the minimum loss is achieved when X (t)
is paired with speaker ¢/, the c'th element of A.(t) is set to
1, and all other elements are set to 0. In other words, A (t)

Algorithm 1: Constrained Clustering.

Input: Embedding vectors V .(t), K-means centroids
He
Output: Frame-level labels of all outputs ©(t)
(resulting permutation)

l:fort in {1,...,T} do

2 0()  aremaxggyep 20, Voo (Ol

3: end for

indicates the optimal speaker assignment of X((t) Similar to
two-speaker sequential grouping, a weight w.(t) = %
is used during training to emphasize frames where the tspeaker
assignment plays an important role. Here LD(t) denotes the
frame-level loss difference between the minimum and maximum
loss. w,(t) can be used to constructa C'T' x C'T diagonal weight
matrix W = diag(w.(t)). V.(t) and A .(t) can be reshaped into
aCT x D matrix Vanda CT x C matrix A, respectively. The
final weighted objective function between V and A is:

TPV = [[W(VVT - AAT)W] [ )

Optimizing JP¢~W forces V. (t) corresponding to the same
speaker to get closer during training, and V.(¢) corresponding
to different speakers to become farther apart. The trained V .(t)
exhibits C' unique patterns, each corresponding to one speaker.

During inference, the K-means algorithm is first applied to
cluster V.(t) into C' groups. However, if no post-processing is
conducted, several embeddings at one frame may be assigned to
the same speaker. We thus design a constrained clustering algo-
rithm to force the frame-level embeddings to different labels, as
given in Algorithm 1. The input to the algorithm includes C' cen-
troids calculated using the K-means algorithm. In each frame,
the resulting permutation ©(¢) corresponds to the assignment
that maximizes the sum of similarities between embeddings and
centroids. Here P denotes the union of all permutations. After
the constrained clustering algorithm, frame-level outputs are
organized according to their labels, and resynthesized to the time
domain. Deep CASA with multi-speaker sequential grouping is
denoted by multi-speaker deep CASA in this study.
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Fig. 3. Temporal convolution in deep CASA. (a) A temporal convolutional
layer with matched temporal resolution in the input and output. Non-causal and
causal versions are illustrated on the left and right, respectively. (b). Temporal
downsampling and upsampling layers in non-causal Dense-UNet.

A temporal convolutional network (TCN) [3], [14] is used
as the sequence model for both two-speaker and multi-speaker
sequential grouping. In the TCN, input features are fed to 8
consecutive dilated convolutional blocks, with an exponentially
increasing dilation factor. The 8 blocks are repeated 3 more
times before embedding estimation. A dropDilation technique
is utilized to overcome the overfitting problem during training.
Other details of the TCN follow those in [18].

To build deep CASA from scratch, the simultaneous grouping
and sequential grouping modules need to be trained in turn
separately. We have shown in [18] that the two modules can be
further fine-tuned jointly with a smaller learning rate to produce
smoother source estimates. In joint optimization, the outputs of
Dense-UNet are organized using the estimated clustering labels,
and compared with the clean sources to form an SNR objective.
In the meantime, the sequential grouping module is tuned using
the same weighted objective in Eq. (4). Joint optimization is
applied in this study.

III. A CAUSAL EXTENSION TO DEEP CASA

In this section, we present causal deep CASA. To turn deep
CASA into a causal version, four aspects need to be examined:
temporal convolution, normalization, clustering and speaker-
number-independent training.

A. Temporal Convolution

Dense-UNet and TCN consist of a series of temporal convo-
lutional layers, which are non-causal in the original deep CASA
system. The left part of Fig. 3(a) illustrates a non-causal temporal
convolutional layer in TCN. To generate the output of frame 7',
future information from frame 7" + 1 is used, making the layer
non-causal. In the causal extension, we change non-causal con-
volution to their causal versions when the temporal resolution
stays the same in the input and output, as shown in the right part
of Fig. 3(a).

There are two special types of temporal convolutional layers in
Dense-UNet, downsampling and upsampling layers. Temporal

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

downsampling is achieved using strided convolutional layers of
size 2. Upsampling layers are transpose convolutional layers of
size 2. Fig. 3(b) illustrates one pass of temporal downsampling
and upsampling. During the downsampling process, inputs from
every two frames are encoded into one single unit, which halves
the temporal resolution. The upsampling layer then projects the
encodings to the original resolution. As a result of encoding, the
output at frame 7" — 1 requires inputs at both frame 7" — 1 and
T, making the layers non-causal. Since there is no solution to
fix the non-causality of such layers, we remove all frame-wise
downsampling and upsampling in Dense-UNet, but keep the
frequency-wise downsampling and upsampling.

B. Normalization

Normalization is utilized extensively in deep CASA to accel-
erate training and stabilize neuron activations. Empirical results
indicate that the choice of normalization significantly impacts
the performance of speaker separation [20]. In non-causal deep
CASA, standard layer normalization (LN) [2] is adopted, where
the features are normalized over all but the batch dimension.
Take Dense-UNet as an example. Feature maps in Dense-UNet
have 4 dimensions: z € REXT*FxK where B, T, I, K denote
the batch size, the number of frames, frequency bins, and chan-
nels, respectively. A global mean and variance are calculated for
each training sample in a batch, and are then utilized to normalize
the feature map:

1
E[z} = TFK Zz(b,t,f,k) (5)
t.fk
1
Var[z] = TR (z(b,t, f, k) — E[z])? (6)
tfok
z — E[z]
LN(z) = ———— O~y + 7
)= Wam e 7P )
where v, B € R1*1*1xK are trainable gain and bias, € is a small

constant added to variance to avoid dividing by zero, and ®
denotes point-wise multiplication. The means and variances are
calculated on a whole utterance in both training and inference,
which makes layer normalization not applicable in a causal
setup.

In this study, we explore three causal normalization tech-
niques as substitutes for layer normalization. In standard batch
normalization (BN) [8], features are normalized over all but the
channel dimension during training:

1
E[Z] = W;Z(bytmﬂk) (8)
Varld = = 3 bt f1) - Bl ©)
bit,f
BN@) = 2= 45 (10)

VVar(z] + €

where « and 3 again denote trainable gain and bias. Mean and
variance gathered in the training phase are utilized for all test
utterances. Since recalculation of statistics is not needed, batch
normalization is causal during inference.
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Because of the complexity of Dense-UNet/TCN, a small batch
size is used (4 or 8) during training. Channel-dependent mean
and variance in BN may fluctuate severely across mini-batches.
We propose a channel-independent version of batch normal-
ization (ciBN) to overcome this issue. In ciBN, features are
normalized over all dimensions during training:

1
Ela] = pms b;kz(b’t’f’ k) (11
_ 1 2
Varls) = prrre thfjk (2(b,t, £,k) = E[2])*  (12)
_ z — E[z]
BN = 1
c¢iBN (z) Varll ¢ Ov+ 3 (13)

Mean and variance gathered in training are used for inference.
We also consider a causal version of layer normalization
(cLN), where the features are normalized in a causal fashion.

1

Ela(t=7)] = —== >_ #(b,t,fk) (14)
t<r,f.k

Varla(t = )] = = 3" (alb1,£,k) ~ Bla(t =7)))
t<r,f,k

f (15)

LNt =7 = =D ZBEC=T] . 5 (6

B \/Var[z(t =7)+e

Here z(t = 7) denotes the 7th frame of the feature map. In
cLN, normalization is conducted frame by frame, with frame-
dependent mean and variance calculated using all previous
frames. A similar normalization technique was used in the causal
version of Conv-TasNet [20].

The three causal normalization techniques can also be applied
to the TCN in the sequential grouping stage. All operations stay
the same, but the frequency dimension is neglected.

In addition to BN, ciBN and cLN, we plan to explore multi-
GPU training with data parallelism and synchronized batch
normalization in future research, which can greatly increase the
batch size in training.

C. Clustering

Once embedding vectors are generated, a clustering step is
needed to assign them to different speakers. Most clustering
based speaker separation algorithms, e.g., deep clustering and
deep CASA, perform this step in an offline fashion. In deep clus-
tering, the K-means algorithm iteratively generates centroids of
clusters using all embedding vectors in the whole utterance. It is
difficult to make a causal extension to K-means for deep cluster-
ing, as embedding vectors corresponding to some clusters may
not be present in the beginning part of an utterance. Therefore,
the number of clusters is unclear for causal processing.

On the other hand, in the setting of multi-speaker deep CASA,
there are C' embedding vectors in each frame, each belonging to
a unique cluster. The design of causal clustering becomes much
easier. The details are given in Algorithm 2.

2113

Algorithm 2: Causal Clustering for Multi-Speaker Deep
CASA.
Input: Embedding vectors V .(t), frame-level energy of
the mixture E'(t), energy threshold «, maximal queue

size Smax
Output: Frame-level labels of all outputs O(t)
forc in {1,...,C} do

Q. < NEW_FIFO_QUEUE()
Q..enqueue(V,.(1))
. < Qc.mean()
O.(1) ¢
end for
Enax ¢ E(1),t + 2
while t < T do
O(t) + argmaxy(ep >oeq Vo, ()1l
if E(t) > aFnax then
forc in {1,...,C} do
Q..enqueve(Vo, 1) (1))
if Q..size() > Siax then
Q..dequeue()
end if
. — Q. mean ()
end for
end if
Emax — maX(Emaxa E(t))
t+—t+1
end while

At the start of the algorithm, C first-in-first-out (FIFO) queues
are created to store embedding vectors belonging to the clusters.
Each embedding vector in the first frame is pushed to one of the
queues to form the initial data. Centroids of the clusters are
calculated as mean values of the queues. Starting from frame
two, each embedding vector is assigned to a unique cluster
using the assignment that maximizes the sum of similarities
between embeddings and centroids. If the energy of the current
frame is insignificant, we move to the next frame. Otherwise, we
push the embedding vectors to their corresponding queues, and
update the centroids. In order to keep the centroids relatively
near the current frame, we remove the oldest item in the queue
when the size of the queue exceeds Sy,.x. To decide whether
a frame has significant energy, we keep track of the maximum
frame energy E'y .«. Frames whose energy is weaker than acEyy, 5
are considered uninformative, and would not be used for cen-
troid calculation. The frame-level assignment continues until all
frames are processed. The two parameters « and Sy, are set to
0.3 and 20 in our study, and the system performance is insensitive
to these specific values.

We also design a causal clustering algorithm for two-speaker
deep CASA, as shown in Algorithm 3. In two-speaker deep
CASA, each frame only has one embedding vector, indicating
the frame-level optimal assignment. At the first frame, we create
2 FIFO queues to store embedding vectors. The first embedding
vector is pushed to the first queue. Starting from frame two, if the
second queue is empty, we check the similarity of embedding
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Algorithm 3: Causal Clustering for Two-Speaker Deep
CASA.

Input: Embedding vectors V (¢), frame-level energy of
the mixture F'(t), energy threshold «, similarity
threshold p, maximal queue size Spax

Output: Frame-level label O(t)

forc in {1,2} do

Q. + NEW_FIFO_QUEUE()

end for

@1 .enqueue(V (1))

py < V(1), Bpax — E(1),0(1) « 1,t + 2

while t < T do

if Q2.empty() then
if V(t —1)V(t)T < p then
O(t) «+ 2
else
O(t) + 1
end if
else
O(t) + argmax (1 2y V ()l
end if
if E(t) > aFmax o (Q2.empty() and O(t) == 2)
then
Qeo(r)-enqueue(V(t))
if Q@(t).size() > Snax then
Qe(t)-dequeue()
end if
Mot < Qor)-mean ()
end if
Epax + max(Fyax, E(1))
t—t+1
end while

vectors between the current frame and the previous frame. If the
similarity is lower than p, we set the current frame to cluster 2,
and push the embedding vector to the second queue. Otherwise
the current frame is set to cluster 1, and the checking continues.
Once the second queue loads the first item, the algorithm starts to
follow the same process as in Algorithm 2. The energy threshold
«, similarity threshold p, and Sy, are set to 0.3, 0.5 and 10,
respectively. Both Algorithm 2 and 3 are easy to implement and
fast during inference.

D. Speaker-Number-Independent Training

The total number of concurrent speakers is usually unknown
in real-world causal applications. A system that generalizes
well to an unknown speaker number is crucial for these situ-
ations. Although multi-speaker deep CASA is designed for C'
concurrent (C' > 2) speakers, if trained properly, a C-speaker
system can generate good results for speech mixtures with less
than C' speakers, without the prior knowledge about the speaker
number. In such cases, some of the outputs produce significantly
lower energy than other outputs, corresponding to silence. The
details of speaker-number-independent training are presented in
Section IV-C.
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IV. EVALUATION AND COMPARISON

A. Experimental Setup

We evaluate our systems on two-speaker and three-speaker
separation datasets, WSJO-2mix and WSJO-3mix [6]. Both
datasets have a 30-hour training set and a 10-hour validation
set generated by selecting random speakers in the Wall Street
Journal (WSJO) training set, and mixing them at various SNRs
between 0 dB and 5 dB. Evaluation is conducted on the open-
condition (OC) test sets, which are similarly generated using 16
untrained speakers from the WSJO0 development set. All mixtures
are sampled at 8 kHz. We calculate STFT with a frame length of
32 ms, a frame shift of 8 ms, and a square root Hanning window.

Performance is evaluated in terms of signal-to-distortion ratio
improvement (ASDR) [24], perceptual evaluation of speech
quality (PESQ) whose values range from —0.5 to 4.5 [9], and ex-
tended short-time objective intelligibility (ESTOI) whose values
range typically between 0 and 1 [10]. Results are also reported in
terms of scale-invariant signal-to-noise ratio improvement (ASI-
SNR) [21] for a systematical comparison with other systems.

B. Models

All deep CASA systems in this study adopt the basic structure
of Dense-UNet and TCN as in [18]. In Dense-UNet, the number
of dense layers in a dense block is set to 5, the number of channels
in each dense layer is set to 64, and all dense layers have a kernel
sizeof 3 x 3andastrideof 1 x 1. The middle layerin each dense
block is replaced with a frequency mapping layer. The network
is optimized with respect to JtPTT-SNR

In TCN, the maximum dilation factor is set to 64. The number
of bottleneck units is selected as 256. The number of units in
depthwise dilated convolutional layers is set to 512. DropDila-
tion with a keep rate of 0.7 is applied during training.

Both networks are trained with the Adam optimization algo-
rithm [11]. The initial learning rate is set to 0.0001 for Dense-
UNet, and 0.00025 for TCN. Learning rate adjustment and early
stopping are employed based on the loss on the validation set.

For causal deep CASA, temporal connections, normaliza-
tion and clustering algorithms are modified as described in
Section III. The model looks back 72 past frames in simultaneous
grouping, and 1016 past frames in sequential grouping. Thus the
theoretical receptive field of causal deep CASA is 8.704 seconds,
all in the past. The latency of causal deep CASA corresponds to
one frame of STFT, which is 32 ms.

C. Results and Comparisons

We first evaluate causal deep CASA on two-speaker mix-
tures. Different simultaneous grouping models are compared
in Table I. Outputs are organized with the optimal speaker
assignment before evaluation. The first row corresponds to
Dense-UNet with non-causal connections and normalization. A
modest performance drop is observed when we switch to the
causal versions. Two normalization techniques are evaluated for
causal processing. BN leads to negligibly better results than
ciBN. Due to slow training, we did not use cLN for causal
Dense-UNet, and leave it as future work.
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Simul. Group. | Temporal convolution | Normalization | ASDR (dB) | PESQ | ESTOI (%)
Dense-UNet Non-causal LN 19.1 3.63 94.3
Dense-UNet Causal BN 18.0 3.52 93.2
Dense-UNet Causal ciBN 17.8 3.52 93.1
TABLE II
AVERAGE ASDR, PESQ AND ESTOI FOR DIFFERENT SEQUENTIAL GROUPING MODELS ON WSJO0-2M1x OC
Seq. Group. Temporal convolution | Normalization | Clustering | ASDR (dB) | PESQ | ESTOI (%)
Two-speaker Causal BN Causal 13.9 3.02 87.0
Two-speaker Causal ciBN Causal 14.6 3.12 88.5
Two-speaker Causal cLN Causal 15.1 3.18 89.4
Multi-speaker Causal cLN Causal 14.8 3.14 88.9
Two-speaker Causal cLN Offline 15.2 3.19 89.5
Multi-speaker Causal cLN Offline 14.9 3.16 89.0
TABLE III

AVERAGE ASDR, PESQ, ESTOI AND FRAME ASSIGNMENT ERROR (FAE) FOR DEEP CASA WITH JOINT OPTIMIZATION ON WSJO0-2M1X OC

Deep CASA with joint optimization | Causal | ASDR (dB) | PESQ | ESTOI (%) | FAE (%)
Two-speaker X 18.0 3.51 93.2 1.22
Multi-speaker X 17.8 3.50 93.0 1.45
Two-speaker v 15.5 3.25 90.1 3.58
Multi-speaker v 15.2 3.23 89.7 3.86

Table II compares different sequential grouping models for
two-speaker mixtures. All sequential grouping TCNs in the table
are built with causal connections and normalization, and trained
on top of the causal Dense-UNet with BN. The first three rows
compare three causal normalization techniques for two-speaker
deep CASA. Thanks to the matched calculation of statistics in
the training and test, cLN substantially outperforms the other
two techniques. We also train a causal TCN with cLN under
the multi-speaker setup, as given in the fourth row. It performs
slightly worse than the two-speaker version, reflecting the princi-
ple of Occam’s razor. When the number of concurrent speakers is
fixed to 2, one embedding vector per frame is enough to indicate
the optimal output assignment. The extra embedding vectors in
multi-speaker deep CASA do not convey much information, and
lead to worse performance during inference.

The last two rows in Table II report the results of causal
TCNs with non-causal clustering. All settings follow the third
and fourth row in Table II except for the clustering algorithms.
The causal clustering algorithms yield almost the same results
as non-causal offline clustering, demonstrating the effectiveness
of the proposed clustering.

Next, we jointly optimize the two stages of deep CASA.
The results are reported in Table III. Four deep CASA systems
are evaluated, either causal or non-causal, and two-speaker
or multi-speaker. Joint optimization is performed in a similar
fashion as in [18]. Compared to the results in Table II, mod-
est improvements are achieved by causal deep CASA when
joint optimization is performed. There is still a small gap be-
tween two-speaker and multi-speaker deep CASA in Table III,

consistent with Table II. In addition to ASDR, PESQ and ESTOI,
frame assignment error (FAE) is reported to show the percentage
of incorrectly assigned frames in terms of minimum frame-level
loss, in other words, errors in speaker tracking. FAE nearly
triples when we switch from non-causal deep CASA to the causal
ones, which suggests a major cause why causal deep CASA
performs worse in terms of all metrics.

To further illustrate the FAE of non-causal and causal deep
CASA, we compare their separated results in Fig. 4. The first
two rows show a male-male test mixture and the two target
speakers. The third row shows the results of non-causal deep
CASA, which makes correct assignment decisions in almost
every frame, and only misses a few high frequency details. The
fourth row corresponds to causal deep CASA. From 0sto 2.5 s,
and 3.3 s to 5.5 s, causal and non-causal deep CASA almost
generate identical outputs. However, causal deep CASA makes
successive incorrect assignments between 2.5 s and 3.3 s, due
to the lack of future information and limited past information.

Table IV compares causal deep CASA (with joint optimiza-
tion) and other state-of-the-art talker-independent methods on
WSJO-2mix OC. For all methods, we list the best reported re-
sults, and leave unreported fields blank. The numbers of parame-
ters in different methods are estimated according to their papers.
The second and third row present two non-causal methods.
Conv-TasNet [20] extends uPIT to the waveform domain using a
convolutional neural network. The sign prediction network [28]
combines DC and uPIT, and train a separate network for phase
reconstruction. All the other systems in the table are causal. The
Listen and Group system [16] estimates frame-level spectral
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Speaker separation results of deep CASA in log magnitude STFT. Two jointly-optimized two-speaker models, non-causal and causal deep CASA, are

compared. (a) A male-male test mixture. (b) Speaker 1 in the mixture. (¢) Speaker 2 in the mixture. (d) Non-causal deep CASA’s output 1. (¢) Non-causal deep
CASA’s output 2. (f) Causal deep CASA’s output 1. (g) Causal deep CASA’s output 2.

TABLE IV
NUMBER OF PARAMETERS, AVERAGE ASDR, ASI-SNR, PESQ AND ESTOI FOR VARIOUS STATE-OF-THE-ART SYSTEMS EVALUATED ON WSJ0-2M1x OC

# of param. | Causal | ASDR (dB) | ASI-SNR (dB) | PESQ | ESTOI (%)
Mixture - - 0.0 0.0 2.02 56.1
Conv-TasNet [20] 5.1M X 15.6 15.3 3.24 -
Sign Prediction Net [28] 56.6M X 15.4 15.2 3.45 -
uPIT [13] 46.3M v 7.0 - - -
Conv-TasNet [20] 5.1M v 11.0 10.6 - -
LSTM-TasNet [20] 32.0M v 11.2 10.8 - -
Listen and Group [16] 8.2M v 11.0 - - -
Two-speaker deep CASA 12.8M v 15.5 15.2 3.25 90.1
IBM - - 13.8 13.4 3.28 89.1

outputs in an autoregressive fashion. It consists of two stages.
In the first stage, the frame-level mixture and source estimates
from the previous frame are transformed into mid-level repre-
sentations. The second stage groups mid-level representations
to two sources. We present the fully causal version of Listen
and Group, which has no look-aheads for phase reconstruction.
Other models include causal versions of uPIT, LSTM-TasNet
and Conv-TasNet. As demonstrated in the table, our causal deep
CASA system outperforms all causal methods by a large margin.
It even surpasses the ideal binary mask (IBM), and matches
the performance of non-causal Conv-TasNet, demonstrating the
power of the proposed causal extension.

Table V compares multi-speaker deep CASA (with joint op-
timization) and other state-of-the-art methods on three-speaker
mixtures WSJO-3mix. As shown in the upper half of the table,
deep CASA produces systematically better results than other

methods under the non-causal setup. When we switch to the
causal setting, the performance of deep CASA drops signifi-
cantly as expected, mostly due to the lack of future information
for sequential grouping. Despite the fact that causal processing
lacks future information, which is inherently useful for speech
processing, the proposed causal extension keeps the assignment
errors to a low level and substantially outperforms the best
published causal results by Conv-TasNet [20] on WSJO-3mix
OC.

Although multi-speaker deep CASA is designed for C' concur-
rent speakers, in theory, a C-speaker system can be directly ap-
plied to speech mixtures with less than C' speakers. In Table VI,
we evaluate the three-speaker deep CASA systems presented in
Table V on two-speaker mixtures (WSJO-2mix OC). The two
outputs with significant energy are selected as active speakers
during evaluation. As shown in Table VI, the three-speaker
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TABLE V
NUMBER OF PARAMETERS, AVERAGE ASDR, ASI-SNR, PESQ AND ESTOI FOR VARIOUS STATE-OF-THE-ART SYSTEMS EVALUATED ON WSJO0-3m1x OC

# of param. | Causal | ASDR (dB) | ASI-SNR (dB) | PESQ | ESTOI (%)
Mixture - - 0.0 0.0 1.66 385
uPIT [13] 92.7M X 7.7 - - -
Conv-TasNet [20] 5. 1M X 13.1 12.7 2.61 -
Sign Prediction Net [28] 56.6M X 12.5 12.1 2.77 -
Multi-speaker deep CASA 12.8M X 14.8 14.5 2.83 81.5
Conv-TasNet [20] 5.1M v 8.2 7.8 - -
Multi-speaker deep CASA 12.8M v 10.1 9.8 2.28 70.6
IBM - - 13.6 13.3 2.86 82.1
TABLE VI

AVERAGE ASDR, PESQ AND ESTOI FOR MULTI-SPEAKER DEEP CASA, TRAINED ON WSJ0-3MIX AND EVALUATED ON WSJ0-2M1X OC

Training set | Causal | ASDR (dB) | ASI-SNR (dB) | PESQ | ESTOI (%)
Multi-speaker deep CASA | WSJO-3mix l 148 144 3.12 87.6
v 114 10.9 2.76 82.7
TABLE VII

AVERAGE ASDR, ASI-SNR, PESQ AND ESTOI FOR SPEAKER-NUMBER-INDEPENDENT SYSTEMS EVALUATED ON WSJ0-2M1X OC AND WSJ0-3MIX OC

Causal WSJ0-2mix OC WSJ0-3mix OC
ASDR (dB) | ASI-SNR (dB) | PESQ | ESTOI (%) | ASDR (dB) | ASI-SNR (dB) | PESQ | ESTOI (%)
uPIT [13] X 10.1 - - - 7.8 - - -
OR-PIT [23] X 15.0 14.8 3.12 - 12.9 12.6 2.60 -
Multi-speaker deep CASA X 17.6 17.4 3.40 92.0 14.8 14.5 2.77 81.2
Multi-speaker deep CASA v 14.2 13.9 3.06 87.8 10 9.6 2.12 69.7
systems yield substantially worse results than the two-speaker TABLE VIII
systems (cf. Table III) on two-speaker test mixtures, possibly REAL TIME FACTOR OF DEEP CASA
due to the mismatch between training and test. Moreover, there
is significant residual energy in the discarded output of three- RTF
speaker deep CASA, i.e., —16.9 dB relative to the other two Causal deep CASA 0.0110
outputs. Non-causal deep CASA | 0.0077

To make the three-speaker systems generalize to two-speaker
mixtures, we fine-tune three-speaker deep CASA with mixtures
from both WSJ0-2mix and WSJO-3mix. The fine-tuning is con-
ducted similarly as joint optimization, where the two stages
are updated together with a small learning rate. To enable the
training of three-speaker models on WSJO-2mix, we extend
WSJO0-2mix with a third silent channel, which contains zero
energy. To avoid infinite SNR objective for the silent channel,
a time-domain [; loss is used instead to tune the simultaneous
grouping module. Table VII shows the results of three-speaker
deep CASA fine-tuned on WSJO-2mix and WSJO-3mix, and
compares it with other speaker-number-independent approaches
trained on WSJO-2mix and WSJO-3mix. All comparison ap-
proaches are uPIT based, as deep clustering based methods do
not perform well when the number of speakers is unknown.
The results are reported on both WSJO-2mix OC and WSJO-
3mix OC. The first three rows summarize speaker-number-
independent training of non-causal systems, where deep CASA
substantially outperforms the other two approaches in terms of
all four metrics on both datasets. While there is no prior result on
a causal algorithm for speaker-number-independent separation,

speaker-number-independent causal deep CASA, as shown in
the fourth row, yields satisfactory results, and even outperforms
speaker-number-dependent causal methods in Table IV and V.
For two-speaker mixtures, speaker-number-independent train-
ing reduces the relative energy in the discarded output of three-
speaker deep CASA to -43.5 dB, negligible for practical utility.

Finally Table VIII reports the computational costs of neural
networks in terms of real time factor (RTF), which is defined
as the ratio of processing time to input signal duration. RTF is
evaluated by running the neural networks for three-speaker deep
CASA (implemented in Tensorflow) on a single NVIDIA V100
GPU. One hundred seconds of input mixtures are processed
for evaluation. As shown in the table, although the removal
of temporal downsampling layers slightly slows the inference
speed of causal deep CASA, it runs much faster than real time.
Non-causal and causal DNNs are on a similar scale in terms of
RTF. In addition to the neural networks, all clustering algorithms
in this study have the complexity of O(T") and can run fast on
CPUs with proper optimization.
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V. CONCLUSIONS

‘We have proposed a causal deep CASA algorithm for monau-
ral talker-independent speaker separation. We adapt temporal
connections and normalization in deep CASA, and propose
two causal clustering algorithms. Experimental results on the
benchmark WSJ0-2mix and WSJO-3mix datasets show that the
proposed causal algorithm outperforms all published results
for causal speaker separation. In addition, speaker-number-
independent training broadens the utility of causal deep CASA
to a more realistic scenario when the speaker number is not given
beforehand. This study represents a major step towards speaker
separation in real-time applications.

Although causal deep CASA shows excellent performance
on simulated datasets, it has several limitations. First, its per-
formance degrades substantially with the increase of concurrent
speakers. It should be noted that this is a common problem in
other studies [20], [23], due to the fact that additional speakers in-
crease the difficulty of both simultaneous and sequential group-
ing. Second, the current system assumes simultaneous speakers,
and does not perform well on real conversations with varying
degrees of overlapped speech. Third, in this study, causal deep
CASA is only trained and evaluated on clean speaker mixtures
without other kinds of interference. Recently, we have extended
non-causal deep CASA to deal with room reverberation [4] and
background noise [17]. We plan to extend causal deep CASA to
overcome these limitations in future research.
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