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Abstract
Speech restoration aims to remove distortions in speech sig-
nals. Prior methods mainly focus on a single type of distor-
tion, such as speech denoising or dereverberation. However,
speech signals can be degraded by several different distortions
simultaneously in the real world. It is thus important to extend
speech restoration models to deal with multiple distortions. In
this paper, we introduce VoiceFixer, a unified framework for
high-fidelity speech restoration. VoiceFixer restores speech from
multiple distortions (e.g., noise, reverberation, and clipping) and
can expand degraded speech (e.g., noisy speech) with a low
bandwidth to 44.1 kHz full-bandwidth high-fidelity speech. We
design VoiceFixer based on (1) an analysis stage that predicts
intermediate-level features from the degraded speech, and (2) a
synthesis stage that generates waveform using a neural vocoder.
Both objective and subjective evaluations show that VoiceFixer
is effective on severely degraded speech, such as real-world his-
torical speech recordings. Samples of VoiceFixer are available
at https://haoheliu.github.io/voicefixer.
Index Terms: speech restoration, speech super-resolution, neu-
ral vocoder, speech synthesis, deep learning

1. Introduction
Human speech often suffers from distortions such as background
noise, room reverberations, or clipping from low-quality devices.
Those distortions degrade the perceptual quality of human listen-
ers. Speech restoration is a task to restore degraded speech to
high-quality speech, which is useful in a wide range of applica-
tions such as online meeting [1] and hearing aids [2].

Previous speech restoration methods mainly focus on a sin-
gle type of distortion, such as speech denoising [3], dereverbera-
tion [4], super-resolution [5], and declipping [6]. However, in the
real world, speech signals can be degraded by several different
distortions simultaneously. These mismatches limit the perfor-
mance of these systems. Several works have explored restoring
speech with multiple distortions, such as noise and reverber-
ation [7, 8]. But other distortions such as low-resolution and
clipping receive less attention, despite their significant impacts
on speech perceptual quality.

Speech fidelity is important to perceptual quality. How-
ever, existing methods show limited performance on high-fidelity
speech restoration. For example, for a noisy speech with low
bandwidth, although the speech denoising method could remove
noises, the restored speech would be still in low fidelity. One way
to address this issue is to concatenate speech restoration meth-
ods (e.g., denoising) with the speech super-resolution method.

* The first two authors contributed equally to this work.
† Part of this work was done during the internship at ByteDance

However, this approach has limitations such as increasing com-
putational cost and accumulating the artifacts introduced by each
speech restoration model. To our knowledge, restoring low-
bandwidth speech with multiple distortions has not been studied
in the literature.

This paper introduces VoiceFixer, a unified framework for
high-fidelity speech restoration. VoiceFixer restores speech from
multiple distortions (e.g., noise, reverberation, and clipping) and
could expand distorted speech with a low bandwidth between
1 kHz and 22.05 kHz to a full-bandwidth high-fidelity speech
signal. We design VoiceFixer based on a two-stage strategy: (1)
an analysis stage that performs mel spectrogram estimation; (2)
a synthesis stage that generates the speech signal from the esti-
mated mel spectrogram. Compared to the conventional speech
restoration methods that operate on spectrogram or waveform,
VoiceFixer uses the low dimensional mel spectrogram as the
intermediate-level feature, which alleviates the difficulties of
restoring multiple distortions simultaneously. In addition, neural
vocoders [9] are usually trained on large-scale speech datasets.
This provides prior knowledge on synthesizing waveform from
low-dimensional mel spectrogram. The contributions of this
paper are listed as follows:

• We present VoiceFixer, a unified framework for 44.1 kHz high-
fidelity speech restoration. VoiceFixer can restore degraded
speech from multiple distortions (e.g., noise, reverberation,
clipping, and low-bandwidth).

• Evaluation result shows the effectiveness of VoiceFixer, which
achieves a 0.256 higher mean opinion scores (MOS) than the
baseline method.

• We release the pre-trained model and source code1 of Voice-
Fixer to encourage future research.

The rest of this paper is organized as follows. Section 2
introduces the formulations of speech distortions we addressed.
Section 3 describes the architecture of our proposed VoiceFixer.
Experiments are presented in Section 4. In Section 5, we sum-
marize this study and discuss our future directions.

2. Problem Formulation
We denote a segment of a speech signal as s ∈ RL, where
L is the number of samples in the segment. We model the
speech distortion process as function d(·). The degraded speech
x ∈ RL thus can be written as x = d(s). Speech restoration
aims to restore high-quality speech ŝ from x by ŝ = f(x), where
f(·) is the restoration function and can be viewed as an inverse
approximation of d(·). The target of the restoration function is
to estimate s by restoring ŝ from the degraded speech x.

1https://github.com/haoheliu/voicefixer_main
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Figure 1: Overview of the proposed VoiceFixer framework. The analysis module and synthesis module are trained separately.

Distortion modeling is an important step to simulate training
data when building speech restoration systems. Previous works
model distortions in a sequential order [10, 11]. Similarly, we
model the distortion d(·) as a composite function:

d(x) = d1 ◦ d2 ◦ ...dQ(x), dq ∈ D, q = 1, 2, ..., Q, (1)

where ◦ stands for function composition and Q is the number
of distortions consisted in d(·). D = {dv(·)}Vv=1 is the set of
distortion types, where V is the total number of types. Equation 1
describes the procedure of compounding different distortions
from D in a sequential order. The four types of speech distortions
we addressed in this work are introduced as follows.
Additive noise is one of the most common distortion and can be
modeled by the addition between speech s and noise n ∈ RL:

dnoise(s) = s+ n. (2)

Reverberation is caused by the reflections of signal within a
space. Reverberation makes speech signals sound distant and
blurred. It can be modeled by convolving speech signals with a
room impulse response filter (RIR) r:

drev(s) = s ∗ r, (3)

where ∗ stands for convolution operation.
Clipping distortion refers to the clipped amplitude of audio sig-
nals when their amplitude exceeds the maximum level. Clipping
can be modeled by restricting signal amplitudes within a range
[−η,+η]:

dclip(s) = max(min(s, η),−η), η ∈ [0, 1]. (4)

In the frequency domain, the clipping effect produces harmonic
components in the high-frequency part and degrades speech
intelligibility accordingly.
Low-bandwidth distortion refers to the limited bandwidth in
the audio recordings caused by low sampling rate or defects
in the recording device. We follow the description in [12] to
produce low-bandwidth distortions but add more filter types [13].
After designing a low pass filter h, we first convolve it with s to
avoid the aliasing phenomenon. Then we perform resampling
on the filtered result from the original bandwidth o to a lower
bandwidth u:

dlow bw(s) = Resample(s ∗ h, o, u). (5)

3. Approach
The two-stage strategy of VoiceFixer is formulated as follows:

f : x 7→ z, (6)

g : z 7→ ŝ. (7)

Equation 6 denotes the analysis stage of VoiceFixer where a
distorted speech x is mapped into a intermediate-level feature z.
Equation 7 denotes the synthesis stage of VoiceFixer, which syn-
thesizes z to the restored speech ŝ. The overview of VoiceFixer
framework is depicted in Figure 1.

3.1. Analysis stage

The goal of the analysis stage is to predict the intermediate rep-
resentation z, which can be used later to recover the speech
signal. In our study, we choose the mel spectrogram as the inter-
mediate representation. Mel spectrogram has been widely used
in tasks such as speech enhancement [14] and audio synthesis
[15, 16]. The frequency dimension of the mel spectrogram is
usually much smaller than the magnitude spectrogram calculated
using short-time-fourier-transform (STFT), thus working on mel-
scale can reduce the dimension of feature space and offer a more
tractable restoration process. The objective of the analysis stage
is to restore the mel spectrogram of the target signals, which can
be written as follows:

Ŝmel = fmel(Xmel;α)⊙ (Xmel + ϵ), (8)

where Xmel is the mel spectrogram of x. It is calculated by
Xmel = |X|W , where |X| is the magnitude spectrogram of x
and W is a set of mel filter banks. The columns of W are not
divided by the numbers of mel bands, because this will make
the restoration model difficult to recover the high-frequency part.
The mapping function fmel(·;α) is the mel-restoration mask-
estimation model parameterized by α. Xmel is added with a
minimum value ϵ before multipling with the output of fmel. ϵ is
set to 1× 10−8 in this work to avoid zero values in Xmel.

We use ResUNet [17, 18] to model the analysis stage. Re-
sUNet consists of six encoder and six decoder blocks. There
are skip connections between encoder and decoder blocks at the
same level. Both encoder and decoder blocks have a similar
structure of four residual convolutions. Each residual convolu-
tional consists of a batch normalization, a leakyReLU activation,
and a two-dimensional convolutional operation. We utilize aver-
age pooling and transpose convolution for the upsampling and
downsampling in the encoder and decoder blocks. We will refer
to ResUNet as UNet in the remaining parts. We optimize the
model in the analysis stage using the MAE loss between the
estimated and the target mel spectrogram, Ŝmel and Smel:

LMAE =
∥∥∥Ŝmel − Smel

∥∥∥
1
. (9)

3.2. Synthesis stage

We realize the synthesis stage with a neural vocoder, which
synthesizes the mel spectrogram into waveform, as denoted in
the following Equation 10:

ŝ = g(Xmel;β), (10)
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where g(·;β) stands for the vocoder model parameterized by β.
The number of speakers used for the training of vocoder is much
larger than that used in the analysis stage, which increases the
robustness of VoiceFixer when generalizing to unseen speakers.
We employ a pre-trained2 time and frequency domain-based gen-
erative adversarial network (TFGAN) [19] as a vocoder. TFGAN
achieves strong performance on 44.1 kHz speaker-independent
speech vocoding, which will be discussed in detail in Section 4.

4. Experiments
We conduct two types of experiments to evaluate the perfor-
mance of VoiceFixer: (1) High-fidelity speech restoration from
simultaneously appearing noise, reverberation, clipping, and low-
bandwidth distortions; (2) Single type restoration from speech
with only one type of distortion (e.g., denoising). In the follow-
ing sections, we first describe the experimental data preparation,
then present the results of these two experiments. The test sets
used in this section are publicly available3.

4.1. Experimental data preparation

Training a speech restoration system relies on pairs of distorted
speech and clean speech. In the high-fidelity speech restoration
task, we simulate speech with multiple distortions. As introduced
in Section 2, we simulate four types of speech distortion: additive
noise, reverberation, clipping, and low-bandwidth. Three types
of datasets are used for the simulation, including clean speech,
noise data, and room impulse response (RIR). Note that clipping
and low-resolution distortion only need the clean speech dataset
for simulation and do not depend on other datasets. We introduce
the three types of datasets as follows.
Clean speech we used is based on VCTK [20], which is a
multi-speaker English corpus that consists of 110 speakers with
different accents. The version of VCTK we used is 0.92. Fol-
lowing the setups in other studies [21], speakers p280 and p315
are omitted for the technical issues. The remaining part is split
into a training set VCTK-Train with 98 speakers and a testing set
VCTK-Test with the last 8 speakers. The remaining 2 speakers
are omitted as they appear in the test set for denoising.
Noise data we used is based on two datasets. The first one
is VCTK-Demand (VD) [22]. VD contains a training part VD-
Train and a testing part VD-Test. Both parts contain clean speech
and noisy speech data. To obtain the noise data from VD, we
minus each noisy data in VD-Train with its corresponding clean
part to get the noise dataset VD-Noise for training. The second
noise dataset we use is the TUT urban acoustic scenes 2018
dataset [23], which contains 89 hours of high-quality recording
from 10 acoustic scenes (e.g., airport). This dataset contains
a development part and an evaluation part. We only use the
evaluation part (DCASE-Eval) for the simulation of the test set
for high-fidelity speech restoration.
Room impulse response is randomly simulated to add reverber-
ation effect on 44.1 kHz speech. Simulation is performed using
an open-source tool4. All the related parameters are randomized,
including the size of the room, the placement of the microphone
and the sound source, the RT60 value, and the pickup pattern of
the microphone. In total, 43239 filters are simulated, in which
we randomly split out 5000 filters as the test set RIR-Test and
named the other 38239 filters as RIR-Train.

2https://github.com/haoheliu/voicefixer
3https://zenodo.org/record/5528144
4https://github.com/sunits/rir_simulator_

python

4.2. High-Fidelity speech restoration

4.2.1. Data sets and distortion modeling

In this task, we simulate low-quality speech with four distortions
in the training and test set, including noise, reverberation, clip-
ping, and low bandwidth. Training data is simulated on the fly
based on the speech data in VCTK-Train, the noise in VD-Noise,
and RIR in RIR-Train. We set up the parameters of each dis-
tortion to be completely random to better cover the real-world
cases. The test set we used in high-fidelity speech restoration,
HiFi-Res, is constructed based on the clean speech in VCTK-
Test, the noise in DCASE-Eval, and RIR in RIR-Test. HiFi-Res
consists of 501 three seconds utterances with similar random
distortions simulated as the training process. We first generate
the distortions following specific order: reverberation, noise,
and clipping. Then the degraded speech is low-pass filtered and
down-sampled to an arbitrary low sampling rate between 2 kHz
to 44.1 kHz. Details of the distortion modeling in this work are
made available on GitHub5.

4.2.2. Experiment details

All the audio files in our datasets are resampled to 44.1 kHz
sampling rate. We calculate STFT using the Hanning window
with a window length of 2048 and a hop size of 441. The mel
filterbank we used consists of 128 filters. For training, We use
Adam optimizer with β1 = 0.5, β2 = 0.999, an initial learning
rate of 3 × 10−4 and a batch size of 24. The first 1000 steps
are warmup steps, during which the learning rate grows linearly
from 0 to 3 × 10−4. The learning rate is scheduled for decay
by 0.9 every 400 hours of training data. We trained our model
using four Nvidia-V100-32GB GPUs for two days.

4.2.3. Baseline systems

We mainly use four baseline systems in the experiment. We
implemented an UNet-based system (Baseline-UNet) for the
high-fidelity speech restoration task, which structure is similar
to the analysis module of VoiceFixer. It performs restoration
by estimating STFT of the high-quality speech and reusing the
phase of the degraded speech, which is a common approach in
previous speech restoration systems [24]. As for the Oracle-Mel
system, we directly use the target mel spectrogram as input to
the vocoder to simulate the case when the analysis module works
ideally. So, Oracle-Mel marks the theoretical upper bound of
the VoiceFixer performance. For the Target system, scores are
calculated using the ground truth clean speech. Conversely, the
Unprocessed system evaluated directly on the distorted speech.

4.2.4. Evaluation metrics

We use both objective and subjective evaluation metrics. The
objective metrics including log-spectral distance (LSD) [25],
scale-invariant signal-to-noise ratio (SISNR) [26], wideband
perceptual evaluation of speech quality (PESQ-wb) [27], and
structural similarity (SSIM) [28]. Since neural vocoders generate
waveforms directly from mel spectrograms, even with the same
perceptual quality, the generated waveforms may not align with
the target waveform in the time domain. This mis-alignment can
considerably degrade the objective metrics, as is often the case
in generative model [29]. Nevertheless, we report the model
performance on these objective metrics for reference.

We use mean opinion scores (MOS) as the subjective eval-

5https://github.com/haoheliu/voicefixer_main
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Table 1: Evaluation result on the high-fidelity speech restoration
test set HiFi-Res. Higher PESQ-wb, SSIM, MOS value indicates
better performance, while LSD is the opposite. The best value
for each metric is shown in bold.

Models PESQ-wb LSD SSIM MOS
Unprocessed 1.94 2.00 0.64 2.38
Oracle-Mel 2.52 0.91 0.74 3.74

Target 4.64 0.01 1.00 3.95
Baseline-UNet 2.67 1.01 0.79 3.37

VoiceFixer 2.05 1.01 0.71 3.62

Figure 2: Box plot of the MOS scores on HiFi-Res test set. Red
and black vertical lines represent median and mean values.

uation metric and invite eight internal language experts in
ByteDance to perform evaluation. Their task is to rate the overall
speech quality of an audio clip with a score between 1 (bad) to
5 (excellent). Each system has 38 samples for evaluation. We
average the MOS values across all language experts as the final
result.

4.2.5. Evaluation results

Table 1 shows the experimental results and Figure 2 depicts the
box plot of the MOS scores. The Oracle-Mel system achieves
a MOS score of 3.74, which is close to the Target MOS of
3.95, indicating that the vocoder performs well in the synthesis
stage. We observe that VoiceFixer obtains 0.256 higher MOS
score than that of Baseline-UNet and is only 0.11 lower than
the Oracle-Mel, demonstrating its good performance for high-
fidelity speech restoration. Although VoiceFixer performs worse
on PESQ-wb and SSIM metrics, it has a much better MOS score
than Baseline-UNet. This result shows that the improvement in
subjective metrics in VoiceFixer is not always consistent with
objective evaluations.

4.3. Single type restoration

To further demonstrate the effectiveness of VoiceFixer, we con-
duct two benchmark speech restoration experiments: speech
denoising and speech declipping.

4.3.1. Denoising

For speech denoising, we evaluate the model performance on
VD-Test (as described in Section 4.1). VD-Test contains 824
utterances from a female speaker and a male speaker. The test
set is simulated at four SNR levels, which are 17.5 dB, 12.5 dB,
7.5 dB, and 2.5 dB. The original data is sampled at 48 kHz. We
downsample it to 44.1 kHz to fit our experiments. We adopt three
recent methods SEGAN [30] , WaveUNet [31], and the model
trained with weakly labeled data [32] (referred to WL-Model)
as baseline methods.

Experimental results are shown in Table 2. The PESQ-wb
score of VoiceFixer reaches 2.43, higher than SEGAN, Wave-

Table 2: Evaluation result on the VD-Test test set. Superscript ∗
indicates the model is only trained on a single restoration task.

Models SISNR PESQ-wb MOS
Unprocessed 8.40 1.97 3.20
Oracle-Mel -17.52 2.85 3.64

Target / 4.50 3.69
∗SEGAN [30] / 2.16 /

∗WaveUNet [31] / 2.40 /
∗WL-Model [32] / 2.28 /
Baseline-UNet 17.58 2.82 3.64

VoiceFixer -16.23 2.43 3.69

Table 3: Evaluation result on the declipping test set DECLI.

Clipping Level 0.25 0.1
Models STOI MOS STOI MOS

Unprocessed 0.95 2.56 0.89 2.72
Oracle-Mel 0.81 3.44 0.81 3.42

Target 1.00 3.42 1.00 3.49
∗SSPADE [33] 0.98 3.34 0.92 2.63
Baseline-UNet 0.97 3.38 0.96 3.23

VoiceFixer 0.82 3.38 0.80 3.38

UNet, and WL-Model. The MOS evaluations demonstrate that
VoiceFixer outperforms the baseline speech denoising model
Baseline-UNet. In addition, we observe that VoiceFixer even
outperforms Oracle-Mel and achieves the same level as Tar-
get on the MOS scores. This is because the restored results
of the VoiceFixer contain more energy in the high-frequency
part, which potentially leads to a better perceptual quality for
the listener. The SISNR of Oracle-Mel and VoiceFixer is signifi-
cantly lower than Baseline-UNet because of the alignment issue
mentioned in Section 4.2.4.

4.3.2. Declipping

For the declipping task, we compare VoiceFixer with a state-
of-the-art synthesis-based method SSPADE [33]. To evaluate
the model performance, we create a test set DECLI based on
VCTK-Test (as described in Section 4.1). DECLI is constructed
by first normalizing the amplitude of VCTK-Test into [−1, 1],
and then simulating clipping on each audio with two clipping
levels 0.25 and 0.1. This resulted in two declipping test sets,
each containing 2937 clipped and clean speech audios.

We adopt MOS as the subjective metric and STOI [34] as
the objective metric. A higher STOI value indicates better perfor-
mance. Experimental results are shown in Table 3. VoiceFixer
outperforms SSPADE on MOS by 0.04 and 1.25 in 0.25 and 0.1
clipping levels, respectively. The higher performance on MOS
demonstrates a better perceptual quality restoration offered by
VoiceFixer on speech declipping.

5. Conclusion
In this study, we propose VoiceFixer, an effective approach for
high-fidelity speech restoration. VoiceFixer consists of an analy-
sis stage modeled by a ResUNet and a synthesis stage using a TF-
GAN. The two stages can also be replaced by other deep learning
models. The subjective evaluation results show that VoiceFixer
achieves superior performance on high-fidelity speech restora-
tion from distortions such as noise, reverberation, clipping, and
low bandwidth. In the future, VoiceFixer will be extended to
more types of distortions.
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