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A human listener has the remarkable ability to segregate an acoustic mix-
ture and attend to a target sound. This perceptual process is called auditory
scene analysis (ASA). Moreover, the listener can accomplish much of auditory
scene analysis with only one ear. Research in ASA has inspired many studies
in computational auditory scene analysis (CASA) for sound segregation. In
this chapter we introduce a CASA approach to monaural speech segregation.
After a brief overview of CASA, we present in detail a CASA system that
segregates both voiced and unvoiced speech. Our description covers the ma-
jor stages of CASA, including feature extraction, auditory segmentation, and
grouping.

12.1 Introduction

We live in an environment rich in sound from many sources. The presence of
multiple sound sources complicates the processing of the target sound we are
interested in, and often causes serious problems for many applications, such as
automatic speech recognition and voice communication. There has been ex-
tensive effort to develop computational systems that automatically separate
target sound or attenuate background interference. When target and interfer-
ence come from different directions and multiple microphones are available,
one may remove interference using spatial filtering that extracts the signal
from the target direction or cancels the signals from the interfering directions
[29], or independent component analysis [26]. These approaches do not apply
to the situations when target and interference originate from the same direc-
tion or only mono-recordings are available. In the monaural (one microphone)
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Fig. 12.1. Schematic diagram of a typical CASA system.

situation, one must consider the intrinsic properties of target or interference
to distinguish and separate them.

As a special case of monaural separation, monaural speech segregation is
of particular importance. Here a major challenge is the variety of interference;
the interference can change in time and space in an unpredictable manner.
For decades, various methods have been proposed for monaural speech en-
hancement, such as spectral subtraction [5], subspace analysis [17], hidden
Markov modeling [46], and sinusoidal modeling [28]. These methods usually
assume certain properties (or models) of interference and then enhance speech
or attenuate interference based on these assumptions. Their capacity for deal-
ing with the variability of interference is much limited in comparison with
human speech segregation. This contrast has motivated a different approach
to monaural speech segregation – mimicking the auditory process of source
separation.

The auditory segregation process is termed by Bregman as auditory scene
analysis (ASA) [6], which is considered to take place in two main stages: Seg-
mentation and grouping. In segmentation, the acoustic input is decomposed
into segments or sensory elements, each of which should originate from a sin-
gle source. In grouping, the segments that likely arise from the same source
are grouped together. Segmentation and grouping are guided by perceptual
principles that determine how the auditory scene is organized according to
ASA cues. These cues characterize intrinsic sound properties, including har-
monicity, onset and offset, location, and prior knowledge of specific sounds.

Research in ASA has inspired considerable work to build CASA (computa-
tional auditory scene analysis) systems for sound segregation (for reviews see
[44, 8]). A main advantage is that CASA does not make strong assumptions
about interference. A typical CASA system is shown in Fig. 12.1. It con-
tains four stages: Peripheral analysis, feature extraction, segmentation, and
grouping. The peripheral processing decomposes the auditory scene into a
time-frequency (T-F) representation via bandpass filtering and time window-
ing. The second stage extracts auditory features corresponding to ASA cues,
which will be used in subsequent segmentation and grouping. In segmentation
and grouping, the system generates segments for both target and interference
and groups the segments originating from the target into a target stream. A
stream corresponds to a sound source. The waveform of segregated target can
then be resynthesized from the target stream [53, 7, 52].
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As an illustration, Figs. 12.2(a) and 12.2(b) show a T-F decomposition
and the waveform of a male utterance, “Her right hand aches whenever the
barometric pressure changes,” from the TIMIT database [18]. Figs. 12.2(c)
and 12.2(d) show a T-F decomposition and the waveform of this utterance
mixed with a crowd noise in playground, at the overall SNR of 0 dB. Here
the input is decomposed using a filterbank with 128 gammatone filters [36]
and 20-ms rectangular time windows with 10-ms window shift (see Sec. 12.3
for implementation details). The small T-F area within each filter channel
and time window is referred to as a T-F unit. Figs. 12.2(a) and 12.2(c) show
the energy within each T-F unit, where a brighter pixel indicates stronger
energy. Fig. 12.2(e) shows the target stream we aim to segregate, which con-
tains all the T-F units dominated by the target. To obtain this stream, a
typical CASA system first merges neighboring T-F units dominated by target
speech into segments, shown as the contiguous black regions in the figure, in
the stage of segmentation. In this stage, the system may also generate seg-
ments for interference. Then in the stage of grouping, the system determines
for each segment whether it belongs to the target and groups them accord-
ingly. Fig. 12.2(f) shows the waveform resynthesized from the target stream
in Fig. 12.2(e).

Brown and Wang have recently written a review chapter on CASA for
speech segregation, also included in a Springer volume [8]. Instead of another
review, this chapter mainly describes our systematic effort on monaural speech
segregation. The chapter is organized as follows. In Sec. 12.2, we give a brief
overview of other CASA studies on monaural speech segregation. We then
describe in depth the major stages of our CASA system in the subsequent
four sections. Sec. 12.7 concludes the chapter.

12.2 Computational Auditory Scene Analysis

Natural speech contains both voiced and unvoiced portions. Voiced speech is
periodic or quasi-periodic. Periodicity and temporal continuity are two major
ASA cues for voiced speech. A well-established representation for periodicity
and pitch perception is a correlogram - a running autocorrelation of each fil-
ter response across an auditory filterbank [31, 48]. The correlogram has been
adopted by many CASA systems for monaural segregation of voiced speech
[53, 13, 7, 16, 52, 23]. In what is regarded as the first CASA model, Weintraub
used a coincidence function, a version of autocorrelation, to capture periodic-
ity as well as amplitude modulation (AM) [53]. He then used the coincidence
function to track pitch contours of multiple utterances. Sounds from differ-
ent speakers are separated by using iterative spectral estimation according to
pitch and temporal continuity. Cooke proposed a model that first generates
local segments based on filter response frequencies and temporal continuity
[13]. These segments are merged into groups based on common harmonicity
and common AM. A pitch contour is then obtained for each group, and groups
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Fig. 12.2. Signal representation. (a) T-F decomposion of a male utterance, “Her
right hand aches whenever the barometric pressure changes.” (b) Waveform of the
utterance. (c) T-F decomposition of the utterance mixed with a crowd noise in
playground. (d) Waveform of the mixture. (e) Target stream composed of all the
T-F units (black regions) dominated by the target (ideal binary mask). (f) The
waveform resynthesized from the target stream.

with similar pitch contours are put into the same stream. Brown and Cooke
proposed to form segments based on correlation of filter responses across fre-
quency and frequency transition across time [7]. These segments are grouped
by common periodicity and common onset and offset. Wang and Brown used
a two-layer oscillator network for speech segregation [52]. In the first layer,
segments are formed based on cross-channel correlation and temporal conti-
nuity. In the second layer, segments are grouped into two streams, one for
the target and the other its background on the basis of dominant pitch in
each time frame. The above systems are mainly data-driven approaches. El-
lis developed a prediction-driven system which generates predictions using a
world model and compares the predictions against the input [16]. The world
model includes three types of sound elements: Noise cloud, transient click,
and harmonic sound.

12.2.1 Computational Goal of CASA

A critical issue in developing a CASA system is to determine its computational
goal [32]. With the initial analysis into T-F units described in Sec. 12.1, we
have suggested that the computational goal of CASA should be to retain the
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T-F units where target speech is more intense than interference and remove
others [21, 23]. In other words, the goal is to identify a binary T-F mask,
referred to as the ideal binary mask, where 1 indicates that target is stronger
than interference in the corresponding T-F unit and 0 otherwise. Target speech
can then be resynthesized with the ideal mask by retaining the acoustic energy
from T-F regions corresponding to 1’s and rejecting other energy. This com-
putational goal is supported by the auditory masking phenomenon: Within
a critical band, a weaker signal tends to be masked by a stronger one [35].
In addition, there is considerable evidence supporting the ideal binary mask
as the CASA objective from both human speech intelligibility [42, 12, 9] and
automatic speech recognition [14, 42] studies (for an extensive discussion see
[51]). What Fig. 12.2(e) shows, in fact, is an ideal binary mask for the mixture
in Fig. 12.2(c). As shown in Fig. 12.2(f), the speech resynthesized from the
ideal binary mask is close to the original clean utterance in Fig. 12.2(b).

12.2.2 Motivation and Overview of the Approach

A common problem in earlier CASA systems is that they do not separate
voiced speech well in the high-frequency range from broadband interference.
This problem is closely related to the peripheral analysis of the input scene.
Most CASA systems perform initial frequency analysis with an auditory filter-
bank, where the bandwidth of a filter increases quasi-logarithmically with its
center frequency. These filters are usually derived from psychophysical data
and mimic cochlear filtering. An important observation is that the structure
of cochlear filtering limits the ability of human listeners to resolve harmonics
[38, 40]. In the low-frequency range, harmonics are resolved since the corre-
sponding auditory filters have narrow passbands including only one harmonic.
In the high-frequency range, harmonics are generally unresolved since the cor-
responding auditory filters have wide passbands including multiple harmonics.
In addition, psychophysical evidence suggests that the human auditory sys-
tem processes resolved and unresolved harmonics differently [11, 3]. Hence,
one should carefully consider the distinctions between resolved and unresolved
harmonics. The earlier CASA systems employ the same strategy to segregate
all the harmonics, which works reasonably well for resolved harmonics but
poorly for unresolved ones.

A basic fact of acoustic interaction is that the filter responses to multiple
harmonics are amplitude-modulated and the response envelopes fluctuate at
the fundamental frequency (f0) of target speech [19]. Fig. 12.3 shows the re-
sponse and its envelope of a gammatone filter centered at 2.5 kHz within a time
frame (from 0.7 s to 0.72 s). The input is the clean utterance in Fig. 12.2(b).
The response in Fig. 12.3 is strongly amplitude-modulated, and its envelope
fluctuates at the f0 rate in this frame.

Motivated by the above considerations, we have proposed to employ differ-
ent methods to segregate resolved and unresolved harmonics of target speech



490 G. Hu, D.L. Wang

0.70 0.71 0.72

−500

0

500

A
m

pl
itu

de

Time in seconds

Fig. 12.3. AM effects for filter responses to multiple harmonics. The input is the
utterance in Fig. 12.2(b). The filter is centered at 2.5 kHz.

[23]. For resolved harmonics, we generate segments based on temporal conti-
nuity and cross-channel correlation, and these segments are grouped according
to common periodicity, similar to [52]. For unresolved harmonics, we generate
segments based on common AM in addition to temporal continuity. These
segments are further grouped based on AM rates, which are obtained from
the temporal fluctuations of the corresponding response envelopes.

So far the discussion is focused on voiced speech. Compared with voiced
speech, unvoiced speech is generally much weaker and more susceptible to
interfering sounds. In addition, unvoiced speech lacks harmonic structure and
is noise-like itself. As a result, segregating unvoiced speech is significantly
more challenging and little previous work has addressed this problem.

We have proposed to segment unvoiced speech based on onset and offset
analysis [24]. Onsets and offsets are important ASA cues [6] because different
sound sources in an environment seldom start and end simultaneously. In
addition, there is strong evidence for onset detection by auditory neurons
[37]. In the time domain, onsets and offsets likely form boundaries between
sounds from different sources. Common onsets and offsets also provide natural
cues to integrate sounds from the same source across frequency. In addition,
onset/offset based segmentation is applicable to both voiced and unvoiced
speech.

Given segments, the next task is to group segments of unvoiced speech.
When interference is non-speech, we may formulate this as a classification
task, i.e., to classify segments as unvoiced speech or interference. Since each
segment should belong to one source, segments dominated by unvoiced speech
are likely to have similar acoustic-phonetic characteristics as those of clean
speech, whereas segments dominated by interference are likely to be different.
Therefore, we can group segments for unvoiced speech by analyzing their
acoustic-phonetic features [25].

In the following sections, we describe our systematic investigation into
segregation of both voiced and unvoiced speech. Our model includes all the
major stages of a typical CASA system shown in Fig. 12.1.
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12.3 Peripheral Analysis and Feature Extraction

We describe below early auditory processing that first decomposes the input
in the T-F domain, and then extracts auditory features corresponding to ASA
cues.

12.3.1 Auditory Periphery

Cochlear filtering is commonly modeled by a gammatone filterbank that de-
composes the input in the frequency domain [36]. The impulse response of a
gammatone filter centered at frequency f is:

g(f, t) =

{
bata−1e−2πbt cos(2πft), t ≥ 0,
0, else,

(12.1)

where a = 4 is the order of the filter. b is the equivalent rectangular bandwidth,
which increases as the center frequency f increases. For a filter channel c, let
fc be the center frequency. Let x(t) be the input signal, the response from
channel c, x(c, t), is then

x(c, t) = x(t) ∗ g(fc, t), (12.2)

where “∗” denotes convolution. The response is shifted backwards by (a −
1)/(2πb) to compensate for the filter delay [20]. We find that this delay com-
pensation gives a small but consistent performance improvement. In addition,
the gain of each filter is adjusted according to equal loudness contours [27] in
order to simulate the pressure gains of the outer and middle ears.

The response of a filter channel can be further processed by the Meddis
model of auditory nerve transduction [33]. This model simulates the nonlinear
processes of the auditory nerve, such as rectification, saturation, and phase
locking. Its output represents the firing rate of an auditory nerve fiber, denoted
by h(c, t).

In each filter channel, the output is divided into 20-ms time frames with
10-ms overlapping between consecutive frames. This frame size is commonly
used for speech analysis. Examples of this T-F decomposition are shown in
Figs. 12.2(a) and 12.2(c). The resulting time-frequency representation is called
a cochleagram.

12.3.2 Correlogram and Cross-Channel Correlation

As discussed in Sec. 12.2, a correlogram is a commonly used periodicity repre-
sentation, which consists of autocorrelations of filter responses across all the
filter channels. Let ucm denote a T-F unit for frequency channel c and time
frame m, the corresponding normalized autocorrelation of the filter response
is given by



492 G. Hu, D.L. Wang

AH(c,m, τ) =

∑
n

h
(
c,mTf − nTs

)
h
(
c,mTf − nTs − τTs

)

∑
n

h2
(
c,mTf − nTs

) . (12.3)

Here, τ is the delay and n denotes digitized time. Tf = 10 ms, the time shift
from one frame to the next and Ts is denoting the sampling time. The above
summation is over the period of a time frame.

As shown in [7, 52], cross-channel correlation measures the similarity be-
tween the responses of two adjacent filter channels and indicates whether the
filters respond to the same sound component. For T-F unit ucm, its cross-
channel correlation with uc+1,m is given by

CH(c,m) =

L∑

τ=0

ÃH(c,m, τ) ÃH(c + 1,m, τ) , (12.4)

where ÃH(c,m, τ) denotes AH(c,m, τ) normalized to 0 mean and unity vari-
ance and LTs = 12.5 ms - the maximum delay for AH.

The AM information is carried by the response envelope. A general way to
obtain response envelope is to perform half-wave rectification followed by low-
pass filtering. Since we are interested in the envelope fluctuations correspond-
ing to target pitch, here we perform a bandpass filtering instead, where the
passband corresponds to the plausible f0 range of target speech. Let hE(c, t)
denote the resulting envelope.

Similar to Eqs. 12.3 and 12.4, we can compute a normalized envelope
autocorrelation to represent AM rates:

AE(c,m, τ) =

∑
n

hE

(
c,mTf − nTs

)
hE

(
c,mTf − nTs − τTs

)

∑
n

h2
E

(
c,mTf − nTs

) (12.5)

and cross-channel correlation of response envelopes,

CE(c,m) =

L∑

τ=0

ÃE(c,m, τ) ÃE(c + 1,m, τ) . (12.6)

Figs. 12.4(a) and 12.4(b) illustrate the correlogram and the envelope
correlogram as well as the cross-channel correlation at time frame 70 (i.e.,
0.7 s from the beginning of the stimulus) for the utterance in Fig. 12.2(b),
and Figs. 12.4(c) and 12.4(d) the corresponding responses to the mixture in
Fig. 12.2(d). As shown in the figure, the autocorrelation of filter response
generally reflects the periodicity of a single harmonic for a channel in the
low-frequency range where harmonics are resolved. The autocorrelation is
amplitude-modulated in high-frequency channels where harmonics are unre-
solved. As a result, these autocorrelations are not as highly correlated between
adjacent channels. On the other hand, the corresponding autocorrelations of
response envelopes are more correlated, as shown in the cross-channel corre-
lations of response envelopes, since they have similar fluctuation patterns.
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Fig. 12.4. Auditory features. (a) Correlogram at frame 70 (i.e. 0.7 second after the
onset) for the utterance in Fig. 12.2(b). For clarity, every third channel is displayed.
The corresponding cross-channel correlation is given in the right panel, and the sum-
mary correlogram in the bottom panel. (b) Envelope correlogram for the utterance.
The corresponding cross-channel envelope correlation is shown in the right panel.
(c) Correlogram and cross-channel correlation for the mixture in Fig. 12.2(d). (d)
Envelope correlogram and cross-channel envelope correlation for the mixture.

12.3.3 Onset and Offset

Onsets and offsets correspond to sudden amplitude increases and decreases.
A standard way to identify such intensity changes is to take the first-order
derivative of intensity with respect to time and then find the peaks and valleys
of the derivative. Because of intrinsic intensity fluctuations, many peaks and
valleys of the derivative do not correspond to actual onsets and offsets. To
reduce such fluctuations, we smooth the intensity over time, as is commonly
done in edge detection for image analysis. The intensity is basically the square
of the envelope of filter response. Smoothing can be performed through either
a diffusion process [43] or lowpass filtering. Here we consider a special case of
Gaussian smoothing. First we calculate the response envelope with half-wave
rectification and lowpass filtering. Since here we are interested in low-rate
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smoothing (σ = 16). The threshold for onset detection is 0.05 and for offset detection
is -0.05, indicated by the dash lines. Detected onsets are marked by downward arrows
and offsets by upward arrows.

fluctuations of envelope, the cutoff frequency of the lowpass filter should be
set smaller than 30 Hz. The obtained low-rate envelope is denoted by xE(c, t).
The smoothed intensity is obtained by the convolution of the intensity (in
decibels) and a Gaussian kernel with mean 0 and variance σ2. The derivative
of the smoothed response is:

d

dt

{
10

[
log10 x2

E(c, t)

]
∗

[
1√
2π σ

exp
(
− t2

2σ2

)]}

= −20 log10

∣∣xE(c, t)
∣∣ ∗

[
t√

2π σ3
exp

(
− t2

2σ2

)]
.

Onsets correspond to the peaks of the derivative above a certain threshold, and
offsets the valleys below a certain threshold. The purpose of thresholding is to
remove peaks and valleys corresponding to insignificant intensity fluctuations.
The above procedure is very similar to the standard Canny edge detector
in image processing [10]. An example of the above procedure is shown in
Fig. 12.5.

12.3.4 Pitch Determination

A periodic sound consists of a harmonic series, each harmonic having a fre-
quency that equals or is a multiple of f0. A frequently-used method for pitch
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determination is to simply pool autocorrelations across all the channels and
then identify a global peak in the summary correlogram [34]. When a har-
monic sound is presented, the autocorrelations of the activated filters in a
correlogram all exhibit a peak at the delay corresponding to the pitch period.
Let AH(m, τ) be the summary correlogram at frame m, that is,

AH(m, τ) =
∑

c

AH(c,m, τ) . (12.7)

The estimated pitch period at frame m, τS(m), is the lag corresponding to
the maximum of AH(m, τ) in the plausible pitch range of target speech. The
bottom panels of Figs. 12.4(a) and 12.4(c) shows examples of summary correl-
ogram. The peak at 7.21 ms in Fig. 12.4(c), representing the estimated pitch
period, turns out to equal that of target speech (indicated by the peak in
Fig. 12.4(a)).

There are several problems with the above method. First, it gives a pitch
value at each frame no matter whether the signal at a particular frame is pe-
riodic or not. Second, detected pitches in neighboring frames may correspond
to different sound sources. Third, it may not give a reliable estimate of target
pitch even if it exists, when the signal-to-noise ratio (SNR) is low. This is
because the autocorrelations in many channels exhibit peaks not correspond-
ing to the periodicity of the target. To address these problems, we apply the
Wang and Brown algorithm [52] in an initial grouping stage. The grouping
in their algorithm is based on the dominant pitch of each time frame, and
can eliminate many T-F units that unlikely belong to the target. With this
initial grouping, we track a target pitch contour by pooling autocorrelations
from the remaining T-F units. The initial grouping is not accurate in the high-
frequency range; however, this stage is employed only for the purpose of pitch
tracking. Note that pitch detection requires only a portion of harmonics; the
fact that the Wang and Brown algorithm works reasonably well in the low-
frequency range accords well with the perceptual evidence that human pitch
detection primarily relies on lower harmonics [39]. To deal with the third
problem, we take advantage of the pitch continuity to enhance the reliability
of target pitch tracking [23]. Specifically, we first determine the reliability of
an estimated pitch based on its coherence with the periodicity patterns of
the retained T-F units in initial grouping, and then use pitch continuity to
interpolate for unreliable pitch points on the basis of reliable ones.

The algorithm given in [23] assumes that the target has a continuous pitch
contour throughout the whole utterance. We note that it can be applied itera-
tively to handle the general situation when the target utterance contains mul-
tiple pitch contours separated by unvoiced speech or silence. This is because
the initial grouping by the Wang-Brown algorithm is based on the longest seg-
ment. Specifically, after extracting the first pitch contour based on the longest
segment, the algorithm can then be applied to extract the next longest pitch
contour from remaining time frames where no target pitch has been detected.
This process can repeat until no more significant pitch contour is detected.
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Fig. 12.6. Results of pitch tracking for the mixture in Fig. 12.2(d). Solid lines
indicate estimated target pitch contours. True pitch points are marked by circles.
For clarity, every other frame is displayed.

However, when interference also contains periodic signal, the above proce-
dure may generate pitch contours for interference as well. To determine the
source for each pitch contour is the task of sequential grouping, which is not
addressed by this algorithm.

Fig. 12.6 shows several estimated pitch contours from the mixture in
Fig. 12.2(d) obtained iteratively as described above. For most time frames,
the detected contours well match the reference pitch contours generated from
the clean utterance using Praat - a standard pitch determination algorithm
for clean speech [4].

The above algorithm only tracks one pitch at a frame. When interference
also contains a harmonic component, e.g., another utterance, it is probably
more helpful to track multiple pitch contours from different sources simulta-
neously. Wu et al. [54] proposed a robust multipitch tracking algorithm, which
works as follows. After a T-F analysis and computing the correlogram, their
algorithm selects channels that likely contain signals dominated by harmonic
sources. The other channels mostly contain aperiodic sounds and therefore are
ignored in subsequent processing. Within each channel, the algorithm treats
a peak in the auto-correlation as a pitch hypothesis. Then it integrates pe-
riodicity information across the selected channels in order to formulate the
conditional probabilities of multiple pitch hypotheses given the periodicity
information in these channels. Finally, a continuous hidden Markov model
(HMM) is used to model pitch dynamics across successive time frames and
the Viterbi algorithm is then used to find optimal pitch contours. The Wu
et al. algorithm is illustrated in Fig. 12.7 for pitch tracking of two simultane-
ous utterances. The algorithm successfully tracks the pitch contours of both
utterances at most time frames.
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Fig. 12.7. Results of multipitch tracking by the Wu et al. algorithm. The input is
the mixture of the utterance in Fig. 12.2(b) and a female utterance: “That noise
problem grows more annoying each day.” Solid lines indicate estimated target pitch
contours. True pitch points of the male utterance are marked by circles, and those
of the female utterance are marked by diamonds. For clarity, every other frame is
displayed.

12.4 Auditory Segmentation

In addition to the conceptual importance of segmentation in ASA, a segment
as a region of T-F units contains more global information of the source that
is missing from individual T-F units, such as spectral and temporal envelope.
This information could be key for distinguishing sounds from different sources.
One may skip the stage of segmentation by grouping individual T-F units
directly. However, such grouping based on local information will not be very
robust. In our view, auditory segmentation provides a foundation for grouping
and is essential for successful CASA.

12.4.1 Segmentation for Voiced Speech

Speech signal lasts for a period of time, within which it has good temporal
continuity. Therefore, T-F units neighboring in time tend to originate from
the same source. In addition, because the passbands of adjacent channels
have significant overlap, a harmonic usually activates a number of adjacent
channels, which leads to high cross-channel correlation. Therefore, we perform
segmentation by merging T-F units based on temporal continuity and cross-
channel correlation [52]. More specifically, only units with sufficiently high
cross-channel correlation of correlogram responses are marked, and neigh-
boring marked units are iteratively merged into segments. To account for AM
effects of unresolved harmonics, we separately mark and merge high-frequency
units on the basis of cross-channel correlation of response envelopes.
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Fig. 12.8. The bounding contours of estimated segments based on cross-channel
correlation and temporal continuity. The background is represented by gray.

Fig. 12.8 shows the segments generated in this process for the mixture in
Fig. 12.2(d). Compared with Fig. 12.2(e), computed segments cover most T-F
regions dominated by voiced speech. In addition, T-F regions dominated by
target and interference are well separated into different segments. If desired,
very small segments can be easily removed [23]. Note that the correlogram is
a periodicity representation, and correlogram-based segmentation therefore is
not expected to work well for aperiodic signal, such as unvoiced speech.

12.4.2 Segmentation Based on Onset/Offset Analysis

Unvoiced speech lacks the harmonic structure, and as a result is more diffi-
cult to segment. We have proposed a general method for segmentation based
on analysis of event onset and offset. This method has three stages: Smooth-
ing, onset/offset detection, and multiscale integration [24], and it works for
both voiced and unvoiced speech since onsets and offsets are generic sound
properties.

As discussed in Sec. 12.3.3, onsets and offsets correspond to sudden inten-
sity increases and decreases, or the peaks and valleys of the time derivative
of the intensity. In smoothing, the intensity is first smoothed over time in
order to reduce insignificant fluctuations. We then perform smoothing over
frequency to enhance synchronized onsets and offsets across frequency. The
degree of smoothing is referred to as the scale [43]. A larger scale leads to
smoother intensity.

In the stage of onset/offset detection and matching, our system detects
onsets and offsets in each filter channel and merges them into onset and offset
fronts if they are sufficiently close. A front corresponds to a boundary along
the frequency (vertical) axis in a 2-D cochleagram representation. Individual
onset and offset fronts are matched, and a matching pair encloses a segment.

Smoothing with a large scale may blur onsets and offsets of a short acoustic
event. Consequently, segmentation may miss short events or combine different
events into one segment. On the other hand, smoothing with a small (fine)
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Fig. 12.9. Bounding contours of estimated segments from multiscale analysis of
onset and offset. (a) One scale analysis. (b) Two-scale analysis. (c) Three-scale
analysis. (d) Four-scale analysis. The input is the mixture shown in Fig. 12.2(d).
The background is represented by gray.

scale may not adequately remove insignificant intensity fluctuations. Conse-
quently, segmentation may separate a continuous event into several segments.
In general, it is difficult to obtain satisfactory segmentation with a single
scale. The multiscale analysis stage is designed to detect and localize different
events at appropriate scales. In this stage, we start at a large scale and then
gradually move to the finest scale. At each scale, the system generates new
segments from within the current background and locates more accurate onset
and offset positions for existing segments.

Figs. 12.9(a), 12.9(b), 12.9(c), and 12.9(d) show the bounding contours
of obtained segments by integrating 1, 2, 3, and, 4 scales, respectively (see
[24] for implementation details). The input is the mixture in Fig. 12.2(d).
Comparing it with Fig. 12.2(e), we can see that at the largest scale, the system
captures most of the speech events, but misses some small segments. As the
system integrates more fine scales, more segments for speech as well as for
interference appear.

12.5 Voiced Speech Grouping

To group voiced speech, we use the segments obtained by the simple algo-
rithm described in Sec. 12.4.1. Given pitch contours from the target pitch
tracking described in Sec. 12.3.4, we label each T-F unit as target dominant
or interference dominant according to target pitch. To label a T-F unit, we
first compare the periodicity of its response with the estimated pitch. Specif-
ically, a T-F unit ucm is labeled as target if the correlogram response at the
estimated pitch period τS(m) is close to the maximum of the autocorrelation
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Fig. 12.10. Results of T-F unit labeling for the mixture in Fig. 12.2(d). Black re-
gions: units labeled as target by the periodicity criterion; gray regions: units labeled
as target by the AM criterion.

within the plausible pitch range, Γ :

AH

(
c,m, τS(m)

)

max
τ∈Γ

AH

(
c, m, τ

) > θT . (12.8)

The above criterion, referred to as the periodicity criterion, works well for
resolved harmonics.

For units responding to multiple harmonics, their responses are amplitude-
modulated. We have found that the periodicity criterion does not work well
for such units. Observe that the envelope of such a response fluctuates at the
f0 rate of the source. Therefore, we label these T-F units by comparing their
AM rates with the estimated pitch. A straightforward way is to check the
autocorrelation of response envelopes:

AE

(
c,m, τS(m)

)

max
τ∈Γ

AE

(
c,m, τ

) > θA . (12.9)

This criterion is referred to as the AM criterion.
In practice, we use the periodicity criterion to label T-F units that belong

to segments formed on the basis of high cross-channel correlation of filter
responses. Such units correspond to resolved harmonics. The remaining units
are labeled by the AM criterion.

Fig. 12.10 shows the T-F units labeled as target for the mixture in
Fig. 12.2(d). Compared with Fig. 12.2(e), one can see that most units dom-
inated by target voiced speech are correctly labeled. However, some units
containing stronger intrusion are also labeled as target speech, especially in
the high-frequency range.

With unit labels, we group a segment into the target stream if the acoustic
energy corresponding to its T-F units labeled as target exceeds half of the
total energy of the segment. Furthermore, significant T-F regions labeled as
inference are removed from the target stream. Finally, to group more target
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Fig. 12.11. Results of segregation for the mixture in Fig. 12.2(d). (a) Segregated
voiced target. (b) The corresponding resynthesized voiced target. (c) Segregated
final target. The arrows indicate the segregated fricatives and affricates. (d) Corre-
sponding resynthesized final target.

energy we expand each target segment by iteratively grouping its neighboring
units that are labeled as target and do not belong to any segment. When this
expansion ends, the system yields a target stream and its background that
consists of the remaining T-F units.

Figs. 12.11(a) and 12.11(b) shows the final target stream and the corre-
sponding resynthesized speech for the mixture in Fig. 12.2(d). Compared with
Fig. 12.2(e), this stream contains a majority of the T-F units where voiced
target speech dominates. In addition, only a small number of units where in-
trusion dominates are incorrectly included. The segregated speech waveform
in Fig. 12.11(b) within voiced speech sections is much more similar to that of
the clean speech in Fig. 12.2(b) than the mixture waveform in Fig. 12.2(d).

The performance of the system on voiced speech segregation has been
evaluated using a corpus of 100 mixtures composed of 10 voiced utterances
mixed with 10 intrusions collected by Cooke [13]. This corpus has been used
to test previous CASA systems [13, 7, 16, 52, 15]. The intrusions have a
considerable variety; specifically they are described in Tab. 12.1.

As discussed in Sec. 12.2, our computational goal is to estimate the ideal
binary mask. Therefore, our evaluation compares the segregated speech, ŝ(n),
against the speech waveform resynthesized from the ideal binary mask, s(n).
Let e1(n) denote the signal present in s(n) but missing from ŝ(n), and e2(n)
the signal present in ŝ(n) but missing from s(n). Then, we measure the per-
centage of energy loss, PEL, and the percentage of noise residue, PNR:

PEL =
∑

n

e2
1(n)

/
∑

n

s2(n) , (12.10)
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Table 12.1. Types of intrusions.

Intrusion Description

N0 1kHz pure tone
N1 white noise
N2 noise bursts
N3 “cocktail party” noise
N4 rock music
N5 siren
N6 trill telephone
N7 female speech
N8 male speech
N9 female speech

PNR =
∑

n

e2
2(n)

/
∑

n

ŝ2(n) . (12.11)

PEL indicates the percentage of target speech excluded from segregated
speech, and PNR the percentage of intrusion included. They provide com-
plementary error measures of a segregation system and a successful system
needs to achieve low errors in both measures.

The results from our model are shown in Tab. 12.2. Each value in the table
represents the average result of one intrusion with 10 voiced utterances, and
a further average across all intrusions is also shown. On average, our system
retains 96.28% of target speech energy, and the percentage of noise residue
is kept at 2.81%. The percentage of noise residue for the original mixtures is
36.05%, also shown in the table; energy loss is obviously zero for the original
mixtures. As indicated by the table, our model achieves very good performance
across the noise types. In particular, the errors measured by PEL and PNR are
balanced in our system.

Since our model applies different mechanisms to segregate resolved and
unresolved harmonics, it is instructive to present the performance in the high-
frequency range separately. For this purpose, we calculate the percentages of
energy loss and noise residue for only the filter channels with center frequencies
greater than 1 kHz, denoted by P H

EL
and PH

NR
, respectively. Note that for the

evaluation corpus, target harmonics in the frequency range above 1 kHz are
generally unresolved. The corresponding results are shown in Tab. 12.2. Most
of the voiced energy in the high-frequency range is recovered and not much
interference is included. The performance in high-frequency range is not as
good as that in the low-frequency range since intrusions are relatively much
stronger in the high-frequency range, which is clear from the average noise
residue of the original mixtures and that in the high-frequency range.

To compare waveforms directly we can measure SNR in decibels:
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Table 12.2. PEL and PNR for segregation of voiced speech.

Intrusion
Segregated target Mixture

PEL(%) P
H

EL(%) PNR(%) P
H

NR(%) PNR(%) P
H

NR(%)
N0 1.47 14.97 0.05 0.52 67.76 96.82
N1 4.61 32.48 3.78 61.00 57.16 96.00
N2 1.01 8.18 0.42 7.98 5.04 44.02
N3 4.04 12.90 2.14 6.44 18.15 42.57
N4 2.81 21.42 3.58 43.28 27.17 81.31
N5 1.32 7.47 0.06 0.46 78.84 97.90
N6 0.95 8.99 0.94 16.27 39.24 91.26
N7 2.01 9.76 2.25 8.68 16.68 43.49
N8 1.16 8.59 0.65 4.32 7.37 31.07
N9 17.80 19.25 14.22 5.47 43.09 27.72

Average 3.72 14.40 2.81 15.44 36.05 65.22

SNR = 10 log10

∑
n

s2(n)

∑
n

[
s(n) − ŝ(n)

]2 . (12.12)

The SNR for each intrusion averaged across 10 target utterances is shown in
Fig. 12.12, together with the SNR of the original mixtures and the results
from the Wang-Brown system [52], whose performance is representative of
previous CASA systems, and a spectral subtraction method [5], a standard
method for speech enhancement. Our system shows substantial improvements.
In particular, it yields a 12.1 dB gain on average over the original mixtures,
a 5.8 dB gain over the Wang-Brown model, and a 7.0 dB gain over spectral
subtraction.

We point out that, although the above algorithm for voiced speech seg-
regation is similar to that presented in [23], it is simplified a good deal. The
guiding principle for the algorithm presented in this chapter is to simplify that
in [23] as much as possible without sacrificing the segregation performance.
Also the delay compensation for gammatone filters discussed in Sec. 12.3.1
is not implemented in [23]. Indeed, the SNR performance for the simplified
version is even slightly better than that in [23]. For completeness, we give the
entire algorithm in the Appendix along with a few further notes.

12.6 Unvoiced Speech Grouping

Unvoiced speech lacks the periodicity feature, which plays the primary role in
voiced speech segregation, and segregation of unvoiced speech is particularly
challenging. Unvoiced speech in English contains three categories of conso-
nants: Stops, fricatives, and affricates [30]. Stops consist of /t/, /d/, /p/, /b/,
/k/, and /g/, and fricatives consist of /s/, /z/, /f/, /v/, /T/, /D/, /S/, /Z/, and
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Fig. 12.12. Signal-to-noise ratio (SNR) results against the ideal binary mask for
segregated speech and original mixtures. White bars show the results from our sys-
tem, gray bars those from the Wang-Brown system, cross bars those from a spectral
subtraction method, and black bars those of original mixtures.

/h/. There are two affricates, /tS/ and /dZ/, each of which is a stop followed by
a fricative. Although about half of these consonants are phonetically voiced,
their acoustic realizations often contain weak voicing [50], and they cannot
be reliably segregated with pitch-based analysis. Hence all these consonants
are treated in this section. As stated in Sec. 12.2, here we only deal with non-
speech interference. Because of the similarity between fricatives and affricates,
we consider them together. In this section, we first describe segregation of stop
consonants and then segregation of fricatives and affricates.

12.6.1 Segregation of Stop Consonants

A stop consonant starts with a closure corresponding to the stop of airflow in
the vocal tract, followed by a burst corresponding to a sudden release of air-
flow. The closure contains little energy and is usually masked by interference.
The focus here is to segregate stop bursts.

In a previous study, we have proposed to segregate stop consonants in two
steps: Stop detection and stop grouping [22]. In the first step, onset detec-
tion is performed in each frequency channel, and onset fronts are formed by
connecting close onsets at neighboring channels. We distinguish onset fronts
belonging to stop consonants from others via featured-based classification.
Stop bursts are characterized by the following features: Spectral envelope, in-
tensity, duration, and formant transition (see [1] for example). However, the
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Table 12.3. PEL and PNR for stop consonants.

Overall SNR (dB) PEL(%) PNR(%)

0 84.79 9.62
10 70.68 2.81
20 41.56 0.81
30 28.01 0.04

formant transition from a stop to its neighboring voiced phoneme is very dif-
ficult to obtain; moreover, it is closely related to the spectrum. Therefore we
use the following features for classification: Spectral envelope, intensity, and
duration.

Stop consonants are grouped based on onset synchrony. Specifically, for
each detected stop, the frequency channels that contain onsets synchronous
with the onset of the stop burst are grouped together. The temporal boundary
within each such channel is determined as from the minimum filter response
immediately before the burst duration to the minimum point immediately
after the burst. This pair of minima approximately marks the onset and the
offset of the stop for the filter channel. The T-F units within this interval are
hence labeled as belonging to the stop consonant.

The above method has been tested with 10 utterances from the TIMIT
database mixed with the following 10 interference: White noise, pink noise,
airplane noise, car noise, factory noise, noise burst, clicks, bar noise, fireworks,
and rain. Average PEL and PNR for stop consonants at different SNR levels are
shown in Tab. 12.3. The system performs well when SNR is relatively high. As
SNR decreases, PEL increases significantly while PNR remains relatively low.

12.6.2 Grouping of Fricatives and Affricates

We group fricatives and affricatives with the segments obtained by the seg-
mentation algorithm described in Sec. 12.4.2. Because fricatives and affricates
are relatively steady acoustically [50], most T-F units dominated by these
consonants are well organized into obtained segments. The task here is to
distinguish these segments from those corresponding to interference. This is
performed in two steps [25]. First, we remove those segments dominated by
non-fricative and non-affricate sounds within voiced sections. Then we apply
a Bayesian classifier to determine whether each remaining segment belongs to
a fricative, an affricate, or interference.

The motivation of the first step is to take advantage of segregated voiced
speech. In the segmentation stage described in Sec. 12.4.2, obtained segments
containing significant portions of fricatives and affricates tend to contain little
signal from other phonemes or interference. Therefore, segments overlapping
significantly with non-fricative and non-affricate sounds are removed. To iden-
tify these segments, our system first uses the segregated voiced speech to de-
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termine time frames containing phonemes other than fricatives and affricates
as follows.

Let H0 be the hypothesis that a T-F region is dominated by interference,
H1,k a T-F region dominated by a fricative or an affricate, indexed by k, and
H2,l a T-F region dominated by another phoneme, indexed by l. Let X(m)
be the power spectrum of the input mixture at frame m, and XS(m) be the
corresponding power spectrum within segregated target stream. Frame m is
labeled as non-fricative and non-affricate if

max
k

P
(
H1,k

∣∣XS(m)
)

< max
l

P
(
H2,l

∣∣XS(m)
)
. (12.13)

By applying the Bayesian rule, we have

max
k

[
p
(
XS(m)

∣∣H1,k

)
P

(
H1,k

)]
< max

l

[
p
(
XS(m)

∣∣H2,l

)
P (H2,l)

]
. (12.14)

Note that frames not occupied by the segregated target are not considered.
The segments whose energy is dominated by such frames are removed.

For each remaining segment, which lasts from frame m1 to m2, let Y (m)
be the power spectrum within the segment at frame m, and

Y =
[
Y (m1), Y (m1 + 1), . . ., Y (m2)

]
. (12.15)

This segment is classified as dominated by a fricative or an affricate if:

max
k

[
p
(
Y

∣∣H1,k

)
P

(
H1,k

)]
> p

(
Y

∣∣H0

)
P

(
H0

)
. (12.16)

Because segments have varied sizes, the complexity for computing p(Y |H1,k)
and p(Y |H0) directly is very high. Fortunately, we find that, by consider-
ing only the dependence between two consecutive frames, a good estimate of
p(Y |H0) can be obtained,

p
(
Y

∣∣H0

)
= p

(
Y (m1)

∣∣H0

) m2−1∏
m=m1

p
(
Y (m + 1)

∣∣Y (m), H0

)
. (12.17)

This observation holds for p(Y |H1,k) also. Then Eq. 12.16 becomes

max
k

[
p
(
Y (m1)

∣∣H1,k)P
(
H1,k

) m2−1∏
m=m1

p
(
Y (m + 1)

∣∣Y (m), H1,k

)]

> p
(
Y (m1)

∣∣H0

)
P

(
H0

) m2−1∏
m=m1

p
(
Y (m + 1)

∣∣Y (m), H0

)
.

(12.18)

In Eq. 12.18, segment duration is implicitly given. To emphasize the contribu-
tion of duration in classification, we insert duration D as an additional feature
into Eq. 12.18:
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max
k

[
p
(
Y (m1), D

∣∣H1,k

)
P

(
H1,k

) m2−1∏
m=m1

p
(
Y (m + 1), D

∣∣Y (m), H1,k

)]

> p
(
Y (m1), D

∣∣H0

)
P

(
H0

) m2−1∏
m=m1

p
(
Y (m + 1), D

∣∣Y (m), H0

)
,

(12.19)
so that the contributions from spectrum and duration are well balanced.

We use the two features of spectrum (including the spectral envelope and
intensity) and duration for the classification task in both of the steps. The
formant transition is another feature for identifying fricatives and affricates.
As discussed in Sec. 12.6.1, the formant transition is partly captured by the
spectrum. In addition, it is very difficult to extract. Therefore, it is not utilized
here.

The prior distributions and probabilities required for calculating Eq. 12.14
and Eq. 12.19 are obtained from training using the training part of the TIMIT
database and 90 environmental intrusions, including crowd noise, traffic noise,
and wind, etc. A Gaussian mixture model with 8 components and a full covari-
ance matrix for each mixture is used for training the probability density func-
tion for all the spectral features and duration. Then in calculating Eq. 12.14
and Eq. 12.19, we use marginal distribution since only a subset of spectral
features is included in the formula.

All the segments identified as dominated by fricatives or affricates are
added to the segregated voiced target. As an illustration, Figs. 12.11(c) and
12.11(d) show the final target stream and the corresponding resynthesized
speech for the mixture in Fig. 12.2(d). The target utterance, “Her right hand
aches whenever the barometric pressure changes” contains 7 fricatives and
2 affricates, italicized in the sentence. Among them, /h/ in “hand”, /v/ in
“whenever”, and /D/ in “the” are mainly voiced and portions of their en-
ergy are recovered in voiced speech segregation (see Fig. 12.11(a)). /h/ in
“her” is mostly masked by the intrusion, hence not recoverable. The remain-
ing 5 are successfully segregated by the system, as indicated by the arrows in
Fig. 12.11(c). At the same time, some intrusion-dominated T-F regions are
also included in the segregated target.

The performance of fricative and affricate segregation is systematically
evaluated with 20 utterances from the testing part of the TIMIT database,
mixed with 10 intrusions at different SNR levels. The intrusions are white
noise, electrical fan, rooster crowing and clock alarm, traffic noise, crowd noise
in playground, crowd noise with music, crowd noise with clapping, bird chirp-
ing and water flow, wind, and rain.

Tab. 12.4 shows the average PEL and PNR for segregation of fricatives and
affricates. As shown in the table, our system extracts about 70% of the frica-
tive and affricate energy from the mixture under different SNR situations. On
the other hand, it retains certain amounts of interference, which are much less
than those included in the original mixture. Our system performs significantly
better than a spectral subtraction method, especially in low SNR situations
[25].
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Table 12.4. PEL and PNR for fricatives and affricates.

Overall SNR (dB)
Segregated target Mixture
PEL(%) PNR(%) PNR(%)

0 33.48 35.11 82.17
5 32.39 21.19 61.38
10 29.39 8.47 36.05
15 29.60 5.34 16.39
20 29.88 3.30 6.21

12.7 Concluding Remarks

We should point out that our approach is primarily feature-based. The features
used by the system, such as periodicity, AM, and onset, are general properties.
Our system does not employ specific prior knowledge of target or interference,
except in unvoiced speech grouping where we perform phonetic classification.
Prior knowledge helps human ASA in the form of schema-based grouping [6].
Schema-based organization has been emphasized by Ellis [16], and is a subject
of several recent studies. Roweis trained HMMs to separate mixtures from two
speakers [45]. Barker et al. coupled segmentation with explicit speech models
[2]. Srinivasan and Wang used word models to restore phonemes that are
masked by interference [49]. These model-based approaches should help to
improve the performance of a feature-based system.

A natural speech utterance contains silent gaps and other sections masked
by interference. In practice, one needs to group the utterance across such time
intervals. This is the problem of sequential grouping, which is not addressed in
this chapter. One way of grouping segments across time uses speech recogni-
tion in a top-down manner [2]. Recently, Shao and Wang proposed to perform
sequential grouping [47] using trained speaker models. Such methods can be
integrated with simultaneous grouping addressed in this chapter. Room re-
verberation is another important issue that must be addressed before speech
segregation systems can be deployed in real world environments (see [41] for
a recent study on pitch-based segregation of reverberant speech).

To conclude, we have described a CASA approach to monaural speech seg-
regation. Our system segregates voiced speech based on periodicity and AM
as well as temporal continuity. Unvoiced speech is segregated via onset/offset
analysis and feature-based classification. Evaluation results show that the sys-
tem performs well on both voiced and unvoiced speech. Note that unvoiced
speech is particularly challenging for monaural speech segregation, and our
research is the first systematic study on separating unvoiced speech.
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Appendix: Voiced Speech Segregation Algorithm

In this appendix, we provide the complete algorithm for voiced speech seg-
regation along with several notes. To facilitate the reader’s use of this al-
gorithm, we also post the C++ code for the algorithm on the website
(http://www.cse.ohio-state.edu/pnl/software.html). See text for notations.
The parameter values used in our implementation are: θC = 0.99, θP = 0.95,
θT = 0.85, and θA = 0.7. The plausible pitch period range, Γ , is [2 ms, 12.5
ms]. The algorithm is given below.

1. Cochlear filtering. A bank of 128 gammatone filters centered from 80
Hz to 5000 Hz is used.

2. Auditory nerve transduction. The Meddis model is used.

3. Feature extraction. The following features are extracted: Correlogram,
envelope correlogram, cross-channel correlation, and dominant pitch. The
envelope is obtained through half-wave rectification and bandpass filtering
with the passband from 50 Hz to 550 Hz.

4. Segmentation

4.1. Mark two adjacent T-F units, ucm and uc+1,m, according to their
cross-channel correlation:

4.1.1. If CH(c,m) > θC, both units are marked as 1.
4.1.2. Else if CE(c,m) > θC and the center frequency of channel c is

above 1 kHz, both units are marked as 2.

4.2. Neighboring T-F units with the same mark are merged into segments.
Two types of segments are obtained, type 1 and type 2, according
to their marks. Two units are considered neighbors if they share the
same channel and appear in consecutive time frames, or if they share
the same frame and appear in adjacent filter channels. Note that there
are unmarked units.

5. Target pitch tracking

5.1. Initial grouping. Only type-1 segments are considered.

5.1.1. ucm is labeled as the dominant source if

AH

(
c,m, τS(m)

)

max
τ∈Γ

AH

(
c,m, τ

) > θP .

τS(m) initially indicates the dominant pitch period at frame m.
5.1.2. At a frame of a segment, the segment is labeled as the dominant

source if its T-F units labeled as the dominant source contain
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more than half of the total energy of the segment at the frame;
otherwise, it is labeled as the background.

5.1.3. Find a seed segment that has the largest number of frames labeled
as the dominant source.

5.1.4. Determine whether a segment agrees with the seed segment. A
segment agrees with the seed segment if they share the same la-
bel (either dominant source or background) for more than 2/3 of
their overlapping frames. All the segments agreeing with the seed
segment form an initial estimate of the target stream, S0.

5.2. Estimate the target pitch contour from S0 for every frame of the seed
segment. For each such frame, m, the estimated target pitch period,
τS(m), is the lag corresponding to the maximum of

∑
c,ucm∈S0

AH(c,m, τ)

in Γ .

5.3. Label individual T-F units and check the reliability of the estimated
pitch against the consistency constraint: A reliable target pitch is con-
sistent with the periodicity of S0.

5.3.1. Label a T-F unit at frame m with an estimated pitch as target if

AH

(
c,m, τS(m)

)

max
τ∈Γ

AH

(
c,m, τ

) > θP .

Otherwise, label it interference.
5.3.2. If less than half of the T-F units of S0 at frame m are labeled as

target, the estimated pitch, τS(m), is considered inconsistent and
all the T-F units of frame m are labeled as interference.

5.4. Re-estimate target stream with labeled T-F units. A segment is labeled
as target if its T-F units labeled as target contain more than half of its
total energy. All the segments labeled as target form a new estimate
of target, S1.

5.5. Estimate target pitch for all the frames of S1 as done in Step 5.2.
Label individual T-F units and check the consistency of the estimated
pitch as done in Step 5.3.

5.6. Pitch interpolation for frames with unreliable pitch:

5.6.1. Consistent pitch points in consecutive frames are connected to
form a set of smooth contours. A smooth contour is the one where
consecutive frames on the contour satisfy the smoothness con-
straint: The pitch contour of speech changes slowly. Specifically,
the change from a pitch period to the one at the next frame is
considered smooth if the change is less than 20% of both pitch
periods.

5.6.2. Find the longest smooth contour and denote it the seed contour.
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5.6.3. Re-estimate the pitch periods for the frames before the seed con-
tour. Set m to the first frame of the seed contour. Iterate until m
is the first frame of S1:
i. Denote the current frame, m, as a reliable frame (i.e. it has a

reliable pitch estimate) and denote c as a selected channel if
ucm ∈ S1 and is labeled as target.

ii. Decrease m by 1.
iii. Check if τS(m) satisfies both the consistency and the smooth-

ness constraints. If yes, go directly to Step 5.6.3.i.
iv. Summate the autocorrelations of ucm’s at frame m where

ucm ∈ S1 and c is a selected channel of the nearest reliable
frame. Replace τS(m) by the lag corresponding to the maxi-
mum of the summation in the range [0.65τR, 1.55τR], where
τR indicates the estimated pitch period at the nearest reliable
frame.

v. Check if the new τS(m) satisfies the smoothness constraint.
If not, τS(m) is considered unreliable, and then go directly to
Step 5.6.3.ii.

5.6.4. Re-estimate the pitch periods for the frames after the seed contour
in a symmetric way, until the last frame of S1.

5.6.5. For any interval of unreliable pitch estimates between two inter-
vals of reliable estimates, the pitch periods within this interval are
obtained by linear interpolation from the last frame of the preced-
ing reliable interval and the first frame of the succeeding one.

6. T-F unit labeling

6.1. For unit ucm belonging to a type-1 segment, label it as target if

AH

(
c,m, τS(m)

)

max
τ∈Γ

AH

(
c,m, τ

) > θT .

Otherwise, label it as interference.

6.2. For a remaining unit, ucm, label it as target if

AE

(
c,m, τS(m)

)

max
τ∈Γ

AE

(
c,m, τ

) > θA .

Otherwise, label it as interference.

7. Grouping

7.1. A segment is labeled as target if its T-F units labeled as target contain
more than half of its total energy. These segments form S2.

7.2. In S2, find all the contiguous T-F regions that are all labeled as in-
terference, and remove those regions longer than 40 ms.
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7.3. Expand S2 by iteratively grouping neighboring unmarked T-F units
that are labeled as target.

The resulting S2 represents the segregated target speech by the algorithm.
A few further notes are in order. Regarding Step 2 – the modeling of the
auditory nerve transduction – we find that the performance without the step
is similar for all intrusions except N9, a female utterance. Step 2 helps the
system to obtain a better target pitch estimate with the N9 intrusion.

Note also that the algorithm segregates only one continuous section of
voiced speech since the pitch determination algorithm provides one pitch con-
tour. If multiple pitch contours are given, one can easily use the given contours
instead of Step 5. As discussed in Sec. 12.3.4, we can also apply Step 5 it-
eratively to estimate multiple pitch contours. However, there is no guarantee
that a pitch contour generated this way corresponds to target speech. As men-
tioned in Sec. 12.7, to determine whether a pitch contour is a target contour
is the task of sequential grouping, not addressed here. Step 5.6 in the above
algorithm performs pitch interpolation and is relatively complicated. A sim-
pler way is to perform linear interpolation between smooth contours obtained
in Step 5.6.1. However, we find this simple method does not work as well for
two reasons. First, our tracking algorithm attempts to re-estimate unreliable
pitch points from selected frequency channels at the nearest reliable frame,
an instance of applying temporal continuity. Second, some smooth contours
are inaccurate – e.g. reflecting doubles of pitch frequencies – and when this
happens, the smoothness of the overall pitch contour tends to be violated.
The tracking algorithm from a seed contour guarantees the smoothness of an
overall pitch contour.
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