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ABSTRACT 
 

Separating speech from acoustic interference is a very 
challenging task. In particular, no system successfully addresses 
the separation of unvoiced speech. Fricatives and affricates are 
two main categories of consonants that contain a significant 
amount of unvoiced signal. We propose a novel system that 
separates fricatives and affricates from non-speech interference. 
The system first decomposes the input mixture into segments, 
each of which contains signal mainly from one source. Then it 
detects segments dominated by unvoiced portions of fricatives 
and affricates with a feature-based Bayesian classifier, and 
groups these segments with voiced speech separated by a 
previous system. The proposed system is evaluated with various 
types of interference and produces promising results. 

1. INTRODUCTION 

Various sounds in the daily environment interfere with target 
speech. Separating speech from interference is required in many 
applications, such as robust speech recognition and hearing aids 
design, which has proved to be challenging. This task is more 
difficult in the monaural (one microphone) situation. However, a 
monaural solution is often necessary or desirable in practice. 

Natural speech contains both voiced and unvoiced portions. 
Compared with voiced speech, unvoiced speech is severely 
weaker and more vulnerable to interfering sounds. In addition, 
unvoiced speech lacks harmonic structure, which is an effective 
cue for voiced speech separation. As a result, separating 
unvoiced speech is significantly more challenging. Currently no 
system is effective for unvoiced speech separation in the 
monaural situation. Speech enhancement techniques, such as 
spectral subtraction [9] and the subspace method [5], can deal 
with unvoiced speech only when prior information for 
interference is available, or interference satisfies specific 
statistical properties. Hence their applications are limited. 

On the other hand, human listeners show impressive 
abilities in separating target speech in various environments, 
through a process referred to as auditory scene analysis (ASA) 
[3]. ASA generally takes place in two stages: segmentation and 
grouping. In segmentation, the acoustic mixture is decomposed 

into a collection of segments. Each segment occupies a 
contiguous time-frequency (T-F) region, containing signal 
mainly from one source. In grouping, the segments originated 
from the same source are grouped together. Psychophysical 
research on ASA has motivated computational systems of speech 
separation based on ASA principles, with success in separating 
voiced speech [4] [8]. However, these systems generally utilize 
harmonicity as the major ASA cue, and cannot deal with 
unvoiced speech. 

To separate unvoiced speech, ASA cues other than 
harmonicity need to be employed. Therefore, we propose to 
separate unvoiced speech based on event onset analysis and 
acoustic-phonetic property of speech, which play important roles 
in speech perception [3]. Unvoiced speech mainly comes from 
three categories of phonemes: fricatives, affricates, and stops. 
Separating stop consonant has been addressed previously [6]. 
Considering the similarity between fricatives and affricates, we 
propose a system to separate fricatives and affricates together. In 
this paper, we will focus on situations where target speech is 
corrupted by non-speech intrusions. 

Our system follows the two stages of ASA: segmentation 
and grouping. In segmentation, a previous system for auditory 
segmentation is applied [7], which forms segments for both 
voiced and unvoiced speech based on onset and offset analysis 
of auditory events. The next step is to detect segments dominated 
by unvoiced portions of fricatives and affricates, and group them 
with corresponding voiced portions. For non-speech intrusions, 
we may treat grouping as a classification task, i.e., to classify 
segments as dominated by fricatives, affricates, or other signal. 
Since each segment shall mainly originate from one source, 
segments dominated by fricatives and affricates are likely to 
have similar acoustic-phonetic characters as those from clean 
speech, while segments dominated by interference are likely to 
have different characters. Therefore, the system groups segments 
according to their acoustic-phonetic features. More specifically, 
it distinguishes segments dominated by fricatives, affricates, or 
interference through a Bayesian classifier based on segment 
spectrum and segment duration. 

This paper is organized as follows. Sect. 2 discusses the 
computational goal for the proposed system. Sect. 3 and 4 
describe details of segmentation and grouping. Sect. 5 presents 
evaluation results. A brief discussion is given in Sect. 6. 
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2. COMPUTATIONAL GOAL 

An input mixture is first normalized at 60 dB SPL. It then passes 
through a 128-channel gammatone filterbank [11], with 
frequencies centered from 50 Hz to 8 kHz. The input is further 
divided into 20-ms frames with 10-ms overlapping between 
consecutive frames. The T-F area in a certain channel within a 
certain frame is referred to as a T-F unit. 

With the above signal decomposition, the computational 
goal of our system is to retain T-F units where target speech is 
more intense than interference and cancel other units. In other 
words, the goal is to identify a binary mask, referred to as the 
ideal binary mask, where 1 indicates that target is stronger than 
interference in the corresponding T-F unit and 0 otherwise. 
Target speech can then be resynthesized with the mask by 
retaining the acoustic energy from T-F regions corresponding to 
1’s and rejecting other energy (see [4] for more details). This 
computational goal is supported by the masking phenomenon of 
the auditory system [10] and researches on automatic speech 
recognition with the missing data technique [2]. For more 
detailed justification, see [8]. 

As an example, Fig. 1(c) and 1(d) show a mixture of a 
female utterance and crowd noise with music. Fig 1(e) shows the 
ideal binary mask. The speech resynthesized from the ideal 
binary mask is shown in Fig. 1(f), which is very close to the 
clean utterance shown in Fig. 1(b). 

Some fricatives and affricates contain both voiced and 
unvoiced signal. The T-F regions dominated by their voiced 
portions are estimated with the Hu-Wang model [8] with pitch 
information obtained from clean speech. The output of the Hu-
Wang model comprises two streams: target stream and 
interfering stream, corresponding to voiced speech and periodic 
components of interference respectively. Generally, unvoiced 
speech and non-periodic interference are not included in either 
stream. The proposed system is focused on determining T-F 
regions dominated by the unvoiced portions of fricatives and 
affricates. 

3. SEGMENTATION 

In this stage, we apply a previous system for segmentation based 

on analysis of event onset and offset [7]. The onsets and offsets 
generally correspond to sudden intensity increases and 
decreases. The input to the system is the average intensity of 
each gammatone filter output at every 1.25-ms window. It is 
smoothed to reduce the intensity fluctuations that do not 
correspond to actual onsets and offsets through a diffusion 
process [12]. The output of the diffusion process at a particular 
diffusion time, referred to as the scale, yields intensity smoothed 
to a particular degree. The larger the scale is, the smoother the 
output intensity is. 

At a certain scale, onsets and offsets are detected as the 
peaks and valleys of the derivative of the smoothed intensity. 
Then the system combines common onsets and offsets into onset 
and offset fronts, and matches individual onset and offset fronts. 
The T-F region between an onset front and the matching offset 
front yields a segment. 

Finally, the system undertakes a multi-scale integration of 
segmentation. It first forms segments at a larger scale. Then, at a 
smaller scale, it locates more accurate onset and offset positions 
for these segments, and adding new segments formed at the 
current scale. Then the system goes to an even smaller scale. 

As an example, Fig. 2 shows the bounding contours of 
obtained segments for the mixture of speech and crowd noise 
with music. Compared with Fig. 1(e), the formed segments cover 
most speech dominant regions, including those dominated by 
fricatives and affricates. Some segments for the intrusion are 
also formed. For more details of this stage, see [7] . 

4. SEGMENT GROUPING 

The task for this stage is to detect segments dominated by the 
unvoiced portions of fricatives and affricates, and group them 
with target stream obtained with the Hu-Wang model [8] (see 
Sect. 2). It is executed in two steps: segment reduction and 
segment categorization. In segment reduction, the system 
removes all the segments with significant energy within time 
frames that could not contain fricatives and affricates. More 
specifically, the system first uses target stream to find time 
intervals containing voiced phonemes other than fricatives and 
affricates and then removes segments with significant energy 
within these intervals. As a result, the majority of segments 
dominated by signal other than fricatives and affricates are 
removed. This helps to increase the robustness of the system and 
greatly reduces the computation burden for segmentation 
categorization. In segment categorization, the system classifies 
the remaining segments as dominated by fricatives, affricates, or 
interference. 

Each step of grouping involves a classification task. In 
segmentation reduction, the task is to label each frame within 
target stream as containing a fricative, an affricate, or any other 
phoneme. In segment categorization, the task is to distinguish 
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Figure 1. (a) Energy distribution across T-F units and (b) 
waveform of a female utterance, “That noise problem grows 
more annoying each day.” (c) Energy distribution across T-F 
units and (d) waveform of the utterance mixed with crowd noise 
with music at 0 dB. (e) The ideal binary mask of the mixture. (f) 
The speech resynthesized from the ideal binary mask. 
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Figure 2. The bounding contours of obtained segments for 
the mixture of speech and crowd noise with music. 
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segments dominated by fricatives and affricates from those 
dominated by interference. For both classification tasks, the key 
is to choose distinctive features that characterize fricatives and 
affricates. Previous research suggests the following features to 
characterize the unvoiced portions of fricatives and affricates: 
spectrum, which includes the spectrum shape and spectrum 
intensity, duration, and transition (see[1] for example). The 
formant transition from a fricative or an affricate to the 
neighboring voiced phoneme is very difficult to obtain, and it is 
closely related to the spectrum. Therefore, we will use the first 
two features for classification. 

Let H0 be the hypothesis that a T-F region is dominated by 
interference, H1,k a T-F region dominated by a fricative or an 
affricate, indicated by k, and H2,l a T-F region dominated by 
other phoneme, indicated by l. Let X(m) be the power spectrum 
for the input at frame m, which is obtained by an average of 64-
point FFT over frame m, and XT(m) the corresponding power 
spectrum within the target stream. Frame m is labeled as non-
fricative and non-affricate if 

))(|(max))(|(max ,2,1 mXHPmXHP Tl
l

Tk
k

<     (1) 

By applying the Bayesian rule, we have 
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l

kkT
k

HPHmXpHPHmXp <  (2) 

Note that since the system labels individual frames, duration 
information is not used for this classification. 

For a segment s, let ES be the total energy included in the 
time frames labeled as non-fricative and non-affricate. If ES is 
larger than 50% of the total energy of segment s, or it is larger 
than the average energy of fricatives and affricates in the training 
data, segment s is removed. 

For a retained segment s, which lasts from frame m1 to m2, 
let XS(m) be the power spectrum within s at frame m, and XS = 
(XS(m1), XS(m1+1), …, XS(m2)). Similar to (2), s is classified as 
dominated by a fricative or an affricate if: 
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Because segments have varied sizes, the complexity for 
computing p(XS|H1,k) and p(XS|H0) directly is extremely high. 
Fortunately, by considering only the dependence between two 
consecutive frames, we already have a good estimation of 
p(XS|H0). That is, 
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and the same for p(XS|H1,k). Then (4) becomes 
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In addition, a Gaussian mixture model (GMM) is used for 
p(X(m)|H0), p(X(m)|H1,k), and p(X(m)|H2,l) so that p(XS(m)|H0), 

p(XS(m)|H1,k), and p(XT(m)|H2,l) can be calculated directly from 
the corresponding marginal distributions.  

In (5), segment duration information is implicitly utilized. 
To emphasis the contribution of duration in classification, we 
add duration as an auxiliary feature into (5) as follows:  
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so that the contribution from spectrum and that from duration are 
well balanced. Here dS is the duration of segment s, 

The prior distributions and probabilities required for 
calculating (2) and (6) are obtained from training. The speech 
samples are from the training part of the TIMIT database. For 
interference, we collected 100 environmental intrusions, 
including crowd noise, traffic noise, and wind, etc. 90 of them 
are used for training, and the remaining 10 are used for 
evaluation. A GMM with 8 mixtures and a full covariance matrix 
for each mixture is used for p(X(m), d|H0), p(X(m), d|H1,k), and 
p(X(m)|H2,l).  

One problem of the above approach for segment 
categorization is the potential mismatching between some real 
interference and intrusions used for training. Since only limited 
intrusions can be included in training, in a realistic environment 
some intrusions may not fit the trained interference model. As a 
result, these intrusions may fit the fricative or affricate model 
better than the interference model, though it does not fit either 
model well. Therefore, we introduce a confidence measure here. 
More specifically, a segment s is classified as dominated by a 
fricative or an affricate when both (6) is satisfied and the 
corresponding likelihood p(XS, dS|H1,k) is larger than a threshold, 
which guarantees that segment s has a good fit with the 
corresponding fricative or affricate model. The threshold is 
chosen to be exactly above the corresponding likelihood of 2% 
of training samples with the same segment size.  

All the segments identified as dominated by fricatives or 
affricates are included into target stream. Then a binary mask is 
constructed by assigning 1 to a T-F unit within the target stream 
and 0 otherwise. The target speech is then resynthesized with the 
mask, which retains the acoustic energy from the mixture 
corresponding to 1’s and rejects that corresponding to 0’s.  

As an illustration, Fig. 3 shows the target stream and the 
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Figure 3. (a) The mask obtained from the Hu-Wang model for 
the mixture of speech and crowd noise with music, and (b) the 
corresponding resynthesized speech. (c) The mask obtained 
from the proposed system for the same mixture, and (d) the 
corresponding resynthesized speech. 
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resynthesized speech for the mixture of speech and crowd noise 
with music. Compared with Fig. 1(b), we can see that the 
majority of fricative and affricate signal is recovered, which is 
missing from the output of Hu-Wang model shown in 3(b). At 
the same time, a little interference is included into the 
resynthesized speech. 

5. EVALUATION 

The system is tested with 20 utterances from the testing part of 
the TIMIT database, mixing with 10 intrusions at different SNR 
levels. The intrusions are white noise, electrical fan, rooster 
crowing and clock alarm, traffic noise, crowd noise in 
playground, crowd noise with music, crowd noise with clapping, 
bird chirping and water flow, wind, and rain. 

We evaluate the system with the following two measures: 
the percentage of energy missed by the system among the total 
energy of fricatives and affricates, referred to as PEL, and the 
percentage of interference energy among the total energy 
retained by the system as fricatives or affricates, referred to as 
PNR. An ideal binary mask is used as the ground truth for target 
speech, which is the computational goal for the system, as 
described previously (see Sect. 2). Table 1 shows the average 
PEL and PNR for the proposed system, and the average PNR of the 
original mixture. Note that PEL of the original mixture is 0%. As 
shown in the table, the proposed system is able to extract about 
70% of the fricative and affricate energy from the mixture under 
different SNR situations. It also retains a certain amount of 
interference, which is not significant compared to the 
interference included in the original mixture. 
Table 1. PEL and PNR 

Proposed system Mixture Overall SNR (dB) 
PEL (%) PNR (%) PNR (%) 

  0  33.48 35.11 82.17 
  5  32.39 21.19 61.38 
10 29.39  8.47 36.05 
15 29.60  5.34 16.39 
20 29.88  3.30   6.21 

Table 2. Segmental SNR for affricates, fricatives, stops, and 
silence 

Overall SNR (dB) Proposed 
system (dB) 

SS 
(dB) 

Mixture 
(dB) 

  0  -0.59 -10.40 -17.98 
  5   0.58  -7.59 -12.98 
10  1.71  -4.72  -7.98 
15  2.42  -1.35  -2.98 
20  2.93   2.54   2.02 

Table 2 shows the segmental SNR of the resynthesized 
speech averaged over time frames containing affricates, 
fricatives, stops, and silence, using clean speech as the signal. 
Regions for stops and silence are included since they may 
contain interference accepted by the proposed system. Other 
regions are not considered since they contain little interference 
accepted by the proposed system, and voiced speech is dominant 
in these regions. For comparison, Table 2 also shows the 
segmental SNR of the original mixture and that of the speech 
enhanced using spectral subtraction (SS), a standard method for 
speech enhancement [9]. As shown in the table, both the 
proposed system and spectral subtraction obtain average SNR 

improvement in every situation. The proposed system performs 
significantly better than spectral subtraction, especially under 
low SNR situations, which mainly due to the fact that spectral 
subtraction cannot deal with non-stationary interference. 

6. DISCUSSION 

Based on analysis of event onset and acoustic-phonetic 
properties of speech, the proposed system is able to separate 
most fricative and affricate consonants without including much 
interference into the separated speech. To our knowledge, it is 
the first system that aims explicitly at separating fricatives and 
affricates. Together with our previous research [6], we have 
shown that unvoiced speech can be separated through onset-
based segmentation, feature-based classification, and subsequent 
grouping. Currently, the system deals with only non-speech 
interference. If the interference is an utterance from another 
speaker, a further process of assigning speech segments to 
corresponding speakers is required. This problem will be 
addressed in future research.  
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