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ABSTRACT
We introduce a new deep learning model for talker-

independent audiovisual speaker separation in noisy con-
ditions in the time-frequency domain. The inputs to the
model include noisy multi-talker mixtures and the corre-
sponding cropped face images. Our approach incorporates
cross-attention audiovisual fusion, effectively merging au-
dio and visual features and enabling seamless information
interchange between auditory and visual modalities. These
fused features drive a separator module, which separates
the acoustic features of individual speakers. The separator
module is based on the recently proposed TF-Gridnet, which
comprises an intra-frame full-band component, a sub-band
temporal module that captures frequency-specific temporal
dependencies, and a cross-attention module dedicated to ex-
tracting long-term fused audiovisual features. To encourage
the utilization of visual streams during training, we employ a
Signal-to-Noise Ratio (SNR) scheduler. Experimental results
demonstrate that the proposed model advances the state-of-
the-art speaker separation performance in several audiovisual
benchmark datasets.

Index Terms— audiovisual speaker separation, multi-
modal speech processing, attentive audiovisual fusion

1. INTRODUCTION

In human speech communication, the presence of acoustic in-
terference, such as background noise or competing speakers,
presents challenges for speech understanding. In such envi-
ronments, the availability of visual information can mitigate
the impact of background interference. Integrating comple-
mentary audio and visual information is shown to result in
improvements in speech comprehension, especially in highly
noisy environments [1].

Multi-talker speaker separation is traditionally tackled us-
ing statistical methods [2, 3, 4]. In recent years, deep neu-
ral networks (DNNs) have gained popularity in audiovisual
speaker separation (AVSS) and audiovisual speech enhance-
ment (AVSE) [5]. DNN models for speaker separation typi-
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cally consist of three modules: 1) an acoustic feature extrac-
tor, 2) a visual feature extractor, and 3) a fusion and separator
module. In the early DNN models, the primary acoustic input
feature was the magnitude spectrogram of the noisy speech in
the time-frequency domain [6]. Recent research has expanded
acoustic features in audiovisual (AV) systems. These features
include both the magnitude spectrogram and the respective
phase [7], the real and imaginary parts of the complex spec-
trogram [8], or even the raw waveform [9].

Researchers have explored various visual data types for
AVSS, including single-frame images [10, 11], lip area im-
ages, and lip motion, as well as facial landmark points [12]
and full-face videos [13]. Employing the entire face as the
input has shown advantages, especially in challenging sit-
uations where the lip area is obstructed or when speakers
are in motion [14]. In AVSS, a prevalent model architecture
combines convolutional neural networks (CNNs) with mul-
tilayer perceptrons (MLPs) [15, 16, 17] to process acoustic
and visual data independently, extracting distinct features.
These features are then fused using long short-term mem-
ory (LSTM) to capture temporal correlations inherent in
audio and visual signals. Recent research has incorporated
transformer-based mechanisms in AVSS and AVSE [18].
Transformer-based models, originally designed for natural
language processing, show promise in AVSS by capturing
long-range dependencies between audio and visual inputs for
better integration of information across time steps.

An inherent challenge in AVSS is the tendency for the
audio modality to dominate the visual modality [19, 20]. Per-
ceptual research demonstrates that in relatively clean acoustic
environments, the contribution of visual cues to speech in-
telligibility is relatively minor; however, the contribution
becomes significant in very noisy acoustic conditions [1].
To maximize the utilization of the visual modality, various
approaches have been explored in the literature [19, 20]. Al-
though these studies have investigated the AV integration for
speaker separation, how to harness information from both
modalities for high-quality separation remains unclear.

In this study, we present a novel AVSS network called AV-
GridNet, based on the recently proposed TF-Gridnet which
performs complex spectral mapping for speech separation in
the time-frequency (T-F) domain [21]. We utilize a cross-
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Fig. 1: Overall architecture of the proposed audiovisual
model for speaker separation

attention AV fusion module for the exchange of information
between audio and visual modalities, allowing the model to
capture complementary cues from these modalities. To fur-
ther enhance the model’s ability to leverage visual informa-
tion for speaker separation, we employ a signal-to-noise ratio
(SNR) scheduler to emphasize the contribution of the visual
stream during the training.

Training our proposed model on AVSpeech [13] dataset,
we assess its performance on four benchmark audiovisual
datasets. The results demonstrate state-of-the-art perfor-
mance in audiovisual speaker separation, showcasing the
effectiveness of our proposed model and training algorithm.

The rest of the paper is organized as follows: Section 2 de-
scribes the building blocks of the proposed AV model. Exper-
imental settings are given in Section 3, and results and com-
parisons are presented in Section 4. Finally, the concluding
remarks are given in Section 5.

2. MODEL DESCRIPTION

The overall architecture of our proposed model is illustrated
in Fig. 1. The audio encoder takes the mixed-signal in short-
time Fourier transform (STFT) domain and extracts acous-
tics features employing a 2D convolutional layer (Conv2D).
The video component works with 3-channel (RGB) cropped
faces of the speakers in the scene. A visual encoder is uti-
lized to extract visual features from the cropped faces of all
speakers in each frame of the video clip. Once we obtain
the processed audio and visual features, we fuse them using
a cross-attention module. This fusion step combines informa-
tion from both modalities to capture their mutual dependen-
cies. The fused audiovisual features are then processed by
a sequence of B separator blocks, responsible for separating
the feature matrix of each speaker. The separated feature ma-
trices are finally converted back to the time domain using a
one-dimensional deconvolution (Deconv1D) layer.

2.1. Audio encoder

Once the mixed-noisy signal has been transformed into the T-
F domain, we employ a Conv2D with a 3×3 kernel to process
the T-F representations. This convolutional operation helps
capture local patterns and dependencies within the T-F units.
Following the Conv2D operation, we apply global layer nor-

malization (gLN) [22] to normalize the activations across the
T-F units. After normalization, we obtain a D-dimensional
embedding for each T-F unit. These embeddings collectively
form an acoustic feature tensor ha ∈ RD×Ta×F , where D
represents the embedding dimension, Ta represents the num-
ber of time frames, and F represents the number of frequency
bins.

2.2. Video encoder

To extract visual features, first, we extract the speaker faces
in each video frame and resize them to 160 × 160 px. This
process enables us to generate 25 face thumbnails per speaker
per second, assuming that the video is recorded at a frame
rate of 25 frames per second (FPS). Then, we use the Incep-
tion ResNet V1 model 1 to encode face images and obtain a
visual feature matrix hv . We modify the last layer of the In-
ception model to match the dimension of the audio features
F . Although we use a pre-trained model, we do not freeze
its parameters and allow them to be trained for the task of
speaker separation. This enables the model to learn and adapt
visual representations that are most suitable for separating the
speakers in the given context.

2.3. Attentive audiovisual fusion

We adopt a cross-modal attentive fusion network [20, 23]. As
shown in Fig. 2(a), this block leverages multi-head attention
(MHA) blocks to effectively combine information from en-
coded audio and video streams. First, we feed the encoded
audio and video features into separate MHA blocks. Within
these blocks, we designate the video (audio) features as K
and V vectors, while the audio (video) features serve as the
query vector Q for the subsequent MHA operation on the au-
dio (video) side. Then, we use layer normalization (LN) and
a feed-forward layer to process the output of each modality.
Finally, we concatenate the output from the audio and video
streams. This concatenated output then goes through a final
round of MHA and feed-forward network (FFN). The main
objective of the last step is to effectively extract and map in-
formation in the fused feature space.

2.4. Separator Module

The separator module, Fig. 2(b), consists of four key com-
ponents: the intra-frame full-band module Fig. 2(c), sub-
band temporal module Fig. 2(d), cross-attention module, and
a two-dimensional deconvolution (Deconv2D) Layer. The
intra-frame full-band module uses a bidirectional long short-
term memory (BLSTM) layer to extract the correlation be-
tween the local spectral information within each frame of the
fused AV features. The sub-band temporal module also em-
ploys BLSTM to capture feature correlations over time. The

1https://github.com/timesler/facenet-pytorch
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Fig. 2: Building blocks of proposed model. (a) Attentive AV
fusion, (b) Separator module, (c) intra-frame full-band mod-
ule, (d) sub-band temporal module

cross-attention module [21] is responsible for capturing long-
range global information by using multi-head attention on
the frame embeddings. Finally, the Deconv2D Layer recon-
structs the separated audio features back into their original
time-domain representation.

2.5. SNR Scheduler

To enhance the impact of the visual modality on the model’s
performance, we employ a technique known as SNR sched-
uler [23]. This method emphasizes the importance of the vi-
sual stream by manipulating background noise levels during
the training. Initially, training begins with high background
noise, deliberately creating a challenging environment where
speech signals contend with heavy noise corruption. By in-
troducing substantial noise, the visual modality gains more
influence, enabling effective use of visual cues despite sig-
nificant acoustic interference. As training progresses, we de-
crease background noise energy gradually until it matches the
validation/test SNR bounds.

3. EXPERIMENTAL SETUP

3.1. Datasets and preprocessing

During training, we utilize the AVSpeech dataset [19], which
aggregates video clips from diverse YouTube sources. This
dataset comprises 4,700+ hours of 3 to 10-second segments,

covering varying acoustic conditions, including noise and
reverberation. To address the issue of uncleanliness in the
AVSpeech dataset, we adopt a subset of the data comprising
relatively clean samples. To identify these clean samples, we
utilize a pre-trained audio-only speech enhancement model
CMGAN [24]. To filter out the clean samples, we com-
pare the original audio signals with the enhanced signals and
assess SNR. Samples with an SNR value below 15dB are
discarded, resulting in a refined subset of approximately 700k
samples. During the training process, we randomly select
two 3-second samples from this subset and combine them to
create training pairs. For the background noise, we randomly
choose 3-second signals from the noise collection provided
by AudioSet [25]. AudioSet contains nearly 1.7 million 10-
second segments, encompassing 526 distinct forms of noise.
From this collection, we select a background noise signal
and determine a SNR value between (-20, 20) dB. We add
the chosen noise signal to the mixed-speakers signal with the
specified SNR, resulting in a realistic audio mixture that in-
cludes speech from multiple speakers and background noise.

3.2. Experimental Settings

In our experimental setup, we utilize a STFT with a win-
dow length of 32 ms and a hop length of 8 ms. The analy-
sis window employed is a square-root Hann window. To ob-
tain complex STFT spectra, we employ a 256-point discrete
Fourier transform (DFT), resulting in 129-dimensional spec-
tra. For the self-attention mechanism, we employ a point-wise
Conv2D operation with 4 output channels to generate key and
query tensors. Each T-F unit is embedded in a 48-dimensional
space, and the hidden units of BLSTMs are set to 192. In the
cross-attention module, we employ 4 attention heads. To cap-
ture a comprehensive representation, we conduct all experi-
ments using 6 separator blocks. To train the model, we em-
ploy scaled-estimate scale-invariant signal-to-distortion ratio
(SE-SI-SDR) loss function [21]. To calculate this form of SI-
SDR loss function, we scale the estimated signal to equalize
its gain with that of the source signal.

4. EVALUATION RESULTS

In this section, we evaluate the performance of our model on
four benchmark audiovisual datasets. Our approach is simi-
lar to previous works such as [13, 26], in which we train our
model on the AVSpeech dataset and assess its effectiveness
and generalization capability by evaluating its performance
on other datasets.

The outcomes of our speaker separation experiments on
the AVSpeech test dataset are displayed in Table 1(a). This
table compares the results of our proposed audiovisual model
with three other models: an audio-only model [27], an au-
diovisual model utilizing an LSTM block for fusion [13], and
a time-domain transformer based audiovisual model [23]. To
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generate the test mixture, we follow the methodology outlined
in [13]. To assess the impact of the SNR scheduler on the
model performance, we present the results of our proposed
model with two different configurations. As demonstrated in
Table 1(a), the incorporation of the SNR scheduler signifi-
cantly influences the performance of the model.

Table 1: Comparison with previous speaker separation works

(a) AVSpeech [13]
SNR sch. SI-SDRi

Audio Only [27] ✗ 11.22
Ephrat et al.[13] ✗ 10.71
Ahmadi et al.[23] ✓ 13.15
Proposed ✗ 13.24
Proposed ✓ 13.85

(b) LRS3 [28]
PESQ STOI

Unprocessed 1.30 0.75
Lee et al.[14] - 0.85
VisualVoice [26] 2.41 0.90
Rahimi et al.[29] 2.42 0.94
Proposed 2.54 0.95

(c) VoxCeleb2 [30]
PESQ SDR STOI

Unprocessed 1.58 0.09 0.64
VoVit [12] - 10.03 0.87
VisualVoice [26] 2.83 10.2 0.87
Ahmadi et al.[23] 2.94 11.54 0.88
Proposed 3.05 12.37 0.90

To evaluate the performance of our model on the LRS3
dataset [28], we follow the methodology described in [14],
using the same set of video clips to generate 1320 test sam-
ples. Table 1(b) presents the results of our model on the LRS3
dataset. As depicted in the table, our model exhibits superior
performance in terms of PESQ and STOI metrics compared
to other methods.

Table 1(c) presents the results of our model on the Vox-
Celeb2 [30] dataset. The VoxCeleb2 dataset consists of in-
the-wild video clips featuring 118 distinct celebrities. This
dataset is particularly challenging due to its varied video qual-
ity, low lighting conditions, and recordings captured from dif-
ferent perspectives, such as a side view. We generate 3000
random samples without any background noise. As shown
in the table, our proposed model achieves superior perfor-
mance compared to other methods, as indicated by the higher
scores in terms of PESQ and STOI metrics. This demon-
strates the effectiveness of our approach in handling the chal-
lenges posed by the VoxCeleb2 dataset and highlights its po-
tential for real-world audiovisual speaker separation tasks.

Fig. 3 presents a comprehensive performance comparison
between our proposed audiovisual model and an audio-only

(AO) model using the GRID dataset [31]. The evaluation was
conducted under various mixed-SNR conditions, spanning
from -20 dB to +20 dB. Notably, the results demonstrate
the superior performance of our audiovisual model over the
audio-only counterpart across this wide range of SNR val-
ues. The outcomes obtained from the comparison emphasize
the significance of integrating both audio and visual infor-
mation to achieve enhanced speech separation, especially in
noisy environments. Furthermore, the results presented in
Fig. 3 offer an insightful observation. As the background
noise energy level decreases, the discrepancy between the
audio-only model and the audiovisual model diminishes.
This phenomenon highlights the growing contribution of the
visual modality as the signal becomes increasingly noisy. The
visual cues appear to play a more prominent role in disentan-
gling speech from noise in challenging acoustic conditions,
leading to the notable performance gains of the audiovisual
model.

Fig. 3: Performance comparison of the proposed model and
audio-only model on GRID dataset [31]

5. CONCLUSION

This study focuses on the problem of audiovisual speaker
separation in noisy environments. We have proposed a
novel time-frequency domain audiovisual model designed
for single-channel speaker separation. To integrate audio and
visual features, we employ a cross-attention fusion module.
To enhance the utilization of visual cues in the audiovisual
integration process, we introduce a training strategy called
an SNR scheduler. This strategy dynamically adjusts SNR
during training, in order to increase the contribution of visual
information for improved robustness. Experimental results
demonstrate that our proposed model outperforms recent
baselines on various widely used audiovisual datasets. Future
work will include the development of causal speaker separa-
tion and expanding the proposed architecture to incorporate
multi-channel acoustic features.
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